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Why Shannon?

I ”the father of information theory”

I ideas from the 1948 paper are ubiquitous

I (hopefully) some can be explained through handwaving:

c©Jeff Portaro, Noun Project

I was on my desktop

Shannon, Claude Elwood. ”A mathematical theory of communication.” ACM

SIGMOBILE Mobile Computing and Communications Review 5.1 (2001): 3-55.
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Capacity and states of a channel
Symbols: S1, . . . , Sn with certain durations t1, . . . , tn.

Allowed
combinations of symbols are signals.
Capacity of a channel:

C = lim
T→∞

logN(T )

T
,

N(T ) is the number of allowed signals of duration T. Units: bits per
second.
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Graphical representation of a Markov process

Source is a stochastic (random) process.

Example. Alphabet: A, B, C. Transition probabilities:
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Example: approximations to English

Using 27 (26+space) alphabet.

I symbols independent and equiprobable:
XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD
QPAAMKBZAACIBZLHJQD

I symbols independent but with frequencies of English text:
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

I digram structure as in English:
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN
D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY
TOBE SEACE CTISBE
”One opens a book at random and selects a letter at random on the page. This

letter is recorded. The book is then opened to another page and one reads until

this letter is encountered. The succeeding letter is then recorded.”
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I trigram structure as in English:
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE

I first-order word approximation:
REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME
CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO
OF TO EXPERT GRAY COME TO FURNISHES THE LINE
MESSAGE HAD BE THESE

I Second-order word approximation:
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH
WRITER THAT THE CHARACTER OF THIS POINT IS
THEREFORE ANOTHER METHOD FOR THE LETTERS THAT
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN
UNEXPECTED
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Entropy

A set of possible events with probabilities

p1, p2, . . . , pn

Need: a measure of uncertainty in the outcome

H = −
n∑

i=1

pi log pi

Example: two possibilities with probabilities p and q = 1− p.

H = −(p log p+ q log q)
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Conditional entropy and entropy of a source

x, y - events

H(x) +H(y) ≥ H(x, y)

= H(x) +Hx(y)

A source has states with entropies Hi, transition probabilities are pi(j),
then

H =
∑
i

PiHi = −
∑
i,j

Pi pi(j) log pi(j)

Different units! Turns out,

lim
N→∞

logn(q)

N
= H

n(q) – number of the most probable sequences of length N , total
probability q with any q 6= 0, 1.

Entropy of source: bits per symbol
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Noiseless case

Theorem (the fundamental theorem for a noiseless channel)

Let a source have entropy H bits/symbol and a channel have a capacity
C bits/second. Then it is possible to encode the output of the source to
transmit at the average rate C

H
− ε symbols/second over the channel

where ε is arbitrarily small.
It is not possible to transmit at an average rate greater than C

H .

[C]

[H]
=

bits/s

bits/sym
= sym/s

The proof involves constructing an explicit code that achieves the required
rate: Shannon-Fano coding.
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Noisy case

Source output: x, decoded output: y. Noise: stochastic process as well.
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Equivocation
Hy(x) – equivocation.

Actual transmission rate:

R = H(x)−Hy(x).

Capacity of a noisy channel (maximum over all sources):

C = max(H(x)−Hy(x)).

Transmitting: 1000 bits/second with probabilities p0 = p1 =
1
2 . On

average, 1 in 100 is received incorrectly.
Saying that rate is 990 (= 1000× 0.99) is not reasonable: don’t know
where the errors occur.
With the above definition of Hy(x) (if y = 1 is received, probability that
x = 1 was sent is 0.99, etc):

Hy(x) = −(0.99 log 0.99 + 0.01 log 0.01) = 0.081 bits/symbol.

Thus the actual transmission rate is

R = 1000− 81 = 919 bits/second
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Theorem (the fundamental theorem for a discrete channel
with noise)

Let a discrete channel have the capacity C and a discrete source the
entropy per second H. If H ≤ C, there exists a coding system with an
arbitrarily small frequency of errors (or an arbitrarily small equivocation
Hy(x)) during transmission. If H > C it is possible to encode the source
so that the equivocation is less than H − C + ε where ε is arbitrarily
small. There is no method of encoding which gives an equivocation less
than H − C.
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Shannon-Fano coding

Image: Wikimedia
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Thanks!


