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A tale of two problems
I Optimal quantization

inf
f∈FN

E‖ξ − f (ξ)‖p

N-quantization error for the random variable ξ
FN – functions taking at most N values in Rd

Example:

Figure: Quantization scheme with the quantizer f (x) =
∑

i yi1Si (x) (from Gray-Neuhoff)

Equivalently,
inf

ωN⊂Rd
Mp

N(ωN , µξ)

for

Mp
N(ωN , µξ) =

∫
min
yi∈ωN

‖x − yi‖p dµξ(x)



Optimal quantization I

Yet another formulation (as in Stefan’s talk):

inf
ν∈PN

Wp(µ, ν)p = inf
ωN⊂Rd

Mp
N(ωN , µξ)

with

Wp(µ, ν) := inf
π∈Π

(∫
Rd

‖x − y‖p dπ(x , y)

)1/p

,

µ(x), ν(y) are the marginals of π(x , y)
PN – probability measures supported on at most N points



Optimal quantization II

I Introduced as a problem of signal compression by Oliver-Pierce-Shannon
(1948)

I Information theory community (Zador, Bucklew-Wise) in the 80s

I Asymptotic properties for N →∞ studied: under the assumption
E‖ξ‖p+δ <∞, and h =

dµξ
dλd

,

lim
N→∞

Np/d min
ωN

Mp
N(ωN , µξ) = cp,d

(∫
hd/(p+d) dλd

)(p+d)/d

with the optimal quantizers converging to hd/(p+d), normalized.

I Most general form due to Gruber (2004)



I Applications to generating distributions in the 90s (Lloyd’s algorithm;
Du-Faber-Gunzburger)

Figure: Left: A top-view photograph, using a polarizing filter, of the territories of the male
Tilapia mossambica; each is a pit dug in the sand by its occupant. The boundaries of the
territories, the rims of the pits, form a pattern of polygons. Photograph and caption from
G. W. Barlow, Hexagonal Territories, Animal Behavior, Volume 22, 1974.
Right: Centroidal Voronoi tessellation of the unit square (from Du-Faber-Gunzburger).



Hypersingular Riesz interactions I

I Measure µ minimizing the interaction functional

µ 7→
∫
A

‖x − y‖−s dµ(x)dµ(y), 0 < s < d , A ⊂ Rd

for a fixed domain A is not easy to determine (s = d − 2 gives harmonic
measure)

I For s > d (hypersingular case), the continuous problem cannot be formulated
as above, but the discrete problem still can be considered:

Es(ωN ; η) =
∑
i

∑
j 6=i

η(xi )‖xi − xj‖−s



Hypersingular Riesz interactions II

I Hardin-Saff (2004), Hardin-Saff-Borodachov (2008) study the asymptotic
properties for N →∞ of the discrete problem, showing

lim
N→∞

minωN⊂A Es(ωN ; η)

N1+s/d
= Cs,d

(∫
A

η−d/s dλd

)−s/d
with the optimal configurations converging to h−d/s , normalized.

I Hardin-Saff-V (2017) computes the distribution for the hypersingular Riesz
with external field,

Es(ωN ; 1,V ) =
∑
i

∑
j 6=i

‖xi − xj‖−s + Ns/d
∑
i

V (xi )



I Applications to generating point distributions

Figure: Approximate optimizers for the hypersingular Riesz interaction with an external field.



k-nearest neighbor Riesz interactions

I Many physical models with nearest-neighbor interactions

I The same asymptotic results hold for the Riesz interaction truncated to
several nearest neighbors:

E k
s (ωN ; η) =

N∑
i=1

∑
j∈Ii,k

η(xi )‖xi − xj‖−s , s > 0,

where Ii,k = the set of indices of k nearest neighbors of xi in ωN , ordered by
nondecreasing distance to xi ; k fixed.

I Namely,

lim
N→∞

minωN⊂A E
k
s (ωN ; η)

N1+s/d
= C k

s,d

(∫
A

η−d/s dλd

)−s/d



Figure: Approximate minimizer of E k
s on a surface.



Question
What is common to the above problems?

I The limiting distribution can be determined.

I The unweighted interaction is scale-invariant and translation-invariant.

I Remote parts of ωN do not interact much.



Short-range interactions

Figure: Left: truncated Riesz energy only includes terms for k nearest neighbors of every x ∈ ωN .
Right: quadratic quantization error depends on the second moment of Voronoi cells of such x ,
the shape of which depends on the position of points with adjacent cells only. Both interactions
are short-range.



Interactions

I Functionals of the form

e(·A) : ωN → [E0,∞], ωN ⊂ Rd , N > N0(e), A ⊂ Ω

optimized by ω∗N(A) on A.

I We study the asymptotics:

Le(A) := lim
N→∞

e(ω∗N(A))

t(N)
, A ⊂ Rd , compact.

I Semicontinuous in ωN , monotonic in A:

sgnσ · Le(A) > sgnσ · Le(B) for A ⊂ B,



Asymptotics of interaction functionals

Theorem (Hardin-Saff-V, 2020+)

Take e as above, suppose the rate t(N) is monotonic and
limN→∞ t(tN)/t(N) = w(t) for a strictly convex w, and any t > 0. If

(a) 0 < Le(x + aqd) < +∞ exists for any x + aqd ⊂ Ω and depends on a, not x;

(b) e is short-range;

(c) Le has a continuity property on cubes,

then
(A) w = t1+σ with sgnσ · t(N) increasing, σ ∈ (−∞,−1) ∪ (0,∞);
(B) for any A ⊂ Ω compact, with Ce = Le(qd),

Le(A) =
Ce

(λd (A))σ

(C) optimizers ω∗N(A) converge to the uniform probability measure, for any
compact A ⊂ Ω with λd(A) > 0.



I σ is determined by the scaling properties of e.

I Curious: the rate is necessarily a power function, up to a slowly-varying
factor:

t(N) = ϕ(N) · N1+σ

I Adding weight works too: if η : Ω→ [h0,∞], h0 > 0,

Z (x + aqd ; η) =

{
η(y) · Ce

[(ad)]σ
: y ∈ (x + aqd)

}
,

then
minZ 6 Le(x + aqd) 6 maxZ

implies

Le(A) =
Ce(∫

A
η−1/σdλd

)σ
for all compact A ⊂ Ω.



I For long-range interactions we had

1

N2
Es(ω∗N)→

∫∫
A

‖x − y‖−s dµ(x)µ(y), N →∞

I Extend e from discrete configurations to all measures:

eN(µ,A) =

{
e(ωN ,A), µ = 1

N

∑
i δxi ;

+∞, otherwise,

I Consider

lim
N→∞

eN(·,A)

t(N)

(limit of functionals)



Gamma-convergence

I The functional

µ 7→ Ce

∫
A

η(x) h(x)1+σ dλd(x)

with
h = dµ/dλd

is the continuous counterpart of the discrete problem now.

I It is the Gamma-limit of eN , so in particular

lim inf
N→∞

eN(µN ,A)

t(N)
> Ce

∫
A

η(x) h(x)1+σ dλd(x)

when µN⇀µ, and for some sequence {µ∗N} the equality is achieved



A tale of two problems

I optimal quantizers

I Riesz interactions

I Persson-Strang meshing algorithm



A tale of three problems
Nobody expects the Spanish inquisition!

Figure: A result of Monty Python (1970)



Persson-Strang meshing algorithm

Figure: Persson-Strang (2004)

I Dynamics with the update

ωn+1
N = ωn

N + ∆tF (ωn
N),

I where F is the sum of Delaunay edge forces, which depend on edge length l
through

f (l , l0) = 1.2(l0 − l)+,

I l0 =
(

1
N

∑
i l

2
i

)1/2



Persson-Strang as a short-range functional

I Integral functional for the above dynamics is

1

2
e(ωN) =

N∑
i=1

∑
j∈Ti

(
(1 + P) ·

(∑
i>1,l∈Ti

‖xl − xi‖2

2
∑N

i=1 #Ti

)
− ‖xj − xi‖2

)
+

,

for a fixed P > 0 and the Delaunay edges connecting (xi , xj) with j ∈ Ti .

I Quadratic scaling means σ = −2/d , −1 6 σ < 0, so the optimal
configurations ω∗N(A) now denote maximizers of e(ωN).

I With the additional assumption that Ti ⊂ Ii,k for some large k, we obtain
asymptotic characterization for the maximizers.



Theorem (Hardin-Saff-V, 2020+)

Suppose d > 3 and Ti ⊂ Ii,k for all i . Then the maximizers of Persson-Strang
with weight η satisfy

lim
N→∞

supωN⊂A e(ωN)

N1−2/d
= Ce

(∫
A

ηd/2 dλd

)2/d

with the optimal configurations converging to η1−2/d , normalized.

Question
What are the asymptotics for d = 2?



Shimada-Gossard algorithm
I Shimada-Gossard (1998) proposed a meshing algorithm based on packing
interacting bubbles.

Figure: The graph of the “interbubble force”.

I Andrade-Vyas-Shimada (2015) packs anisotropic bubbles!



Shimada-Gossard with nonuniform density

Figure: Packed bubbles and their Delaunay triangulation.



Some open problems

I What other short-range interactions are there? For example, in
Petrache-Serfaty (2017), it is shown that the asymptotics of the second-order
term for the Riesz energy, d − 2 6 s < d , is determined by

Cs,d

∫
h1+s/d dλd(x)

with h = dµ∗/dλd , the density of the minimizer of

µ 7→
∫∫
‖x − y‖−s dµ(x)dµ(y) +

∫
V (x) dµ(x)

I Is it possible to bound the degree of the Delaunay mesh in Persson-Strang?

I Can Shimada-Gossard be treated within the same framework?

I What about angles, degrees in Delaunay triangulations of Riesz minimizers?



Conjecture

Second-order term of the Riesz energy behaves as a short-range interaction.

Conjecture

Optimizers of the Shimada-Gossard interaction are uniformly distributed.



Thank you!
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