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A tale of two problems

» Optimal quantization
inf El||& — F(9)]P
Jinf B¢ - £(¢)]|

N-quantization error for the random variable &
Fn — functions taking at most N values in RY

Example:

Yn n Y2 iz 4

L5 [F5] iy 4

Figure: Quantization scheme with the quantizer f(x) = 37, yils;(x) (from Gray-Neuhoff)

Equivalently,
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Optimal quantization |

Yet another formulation (as in Stefan's talk):

inf W, P = inf M},
I, Wl = It M 1)

with
1/p
Wy (p,v) := inf (/ IIx — ylIP d7r(x,y)> ,
el R4

wu(x),v(y) are the marginals of 7(x, y)
Pn — probability measures supported on at most N points



Optimal quantization Il

» Introduced as a problem of signal compression by Oliver-Pierce-Shannon
(1948)

> Information theory community (Zador, Bucklew-Wise) in the 80s

» Asymptotic properties for N — oo studied: under the assumption

dp
E||£[|P+° < oo, and h = FIvE

(p+d)/d
lim NP/d m|n My (wn, pe) = Cpd (/ pd/(p+d) d/\d>

N—oco

with the optimal quantizers converging to h?/(P+9) normalized.
> Most general form due to Gruber (2004)



> Applications to generating distributions in the 90s (Lloyd's algorithm;
Du-Faber-Gunzburger)

Figure: Left: A top-view photograph, using a polarizing filter, of the territories of the male
Tilapia mossambica; each is a pit dug in the sand by its occupant. The boundaries of the
territories, the rims of the pits, form a pattern of polygons. Photograph and caption from
G. W. Barlow, Hexagonal Territories, Animal Behavior, Volume 22, 1974.

Right: Centroidal Voronoi tessellation of the unit square (from Du-Faber-Gunzburger).



Hypersingular Riesz interactions |

» Measure p minimizing the interaction functional
pos [ eyl dulduty),  0<s<d, ACR
A

for a fixed domain A is not easy to determine (s = d — 2 gives harmonic
measure)

» For s > d (hypersingular case), the continuous problem cannot be formulated
as above, but the discrete problem still can be considered:

swnin) =D )k — x|~

i j#i



Hypersingular Riesz interactions |l

> Hardin-Saff (2004), Hardin-Saff-Borodachov (2008) study the asymptotic
properties for N — co of the discrete problem, showing

in., E. i —s/d
fim MNenc Exlwwin) _ o (/ n“’/SdAd)
A

N— oo N1+$/d

with the optimal configurations converging to h=9/5, normalized.

» Hardin-Saff-V (2017) computes the distribution for the hypersingular Riesz
with external field,

E(wni 1, V) =D llxi — x|~ + NS/"ZVX,

i j#i



» Applications to generating point distributions

Figure: Approximate optimizers for the hypersingular Riesz interaction with an external field.



k-nearest neighbor Riesz interactions

» Many physical models with nearest-neighbor interactions

» The same asymptotic results hold for the Riesz interaction truncated to
several nearest neighbors:

EX(wnin) = ZZ (a)llxi =175, s >0,

i=1 j€l k

where [; , = the set of indices of k nearest neighbors of x; in wy, ordered by
nondecreasing distance to x;; k fixed.

» Namely,

. . - /d
. mingyca EX(wn;m) ok —d/ )
N —— T = Gl ),



Figure: Approximate minimizer of Esk on a surface.




Question
What is common to the above problems?

» The limiting distribution can be determined.
» The unweighted interaction is scale-invariant and translation-invariant.

» Remote parts of wy do not interact much.



Short-range interactions
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Figure: Left: truncated Riesz energy only includes terms for k nearest neighbors of every x € wy.
Right: quadratic quantization error depends on the second moment of Voronoi cells of such x,
the shape of which depends on the position of points with adjacent cells only. Both interactions

are short-range.
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Interactions

» Functionals of the form
e(-A):wy — [Eoy00],  wy CRY N> No(e), AcCQ

optimized by wj (A) on A.
» We study the asymptotics:

A C RY, compact.

» Semicontinuous in wy, monotonic in A:

sgno - Le(A) = sgno - Le(B) for ACB,



Asymptotics of interaction functionals
Theorem (Hardin-Saff-V, 2020+)

Take e as above, suppose the rate t(N) is monotonic and
limy— oo t(tN)/t(N) = w(t) for a strictly convex w, and any t > 0. If

(a) 0 < Le(x + aq,) < +o0 exists for any x + aq, C Q2 and depends on a, not x;
(b) ¢ is short-range;

(c) Le has a continuity property on cubes,

then
(A) w = t177 with sgno - t(N) increasing, o € (—o0, —1) U (0, 0);
(B) for any A C Q compact, with Ce = £¢(qy),

C
Le(A) = oty

C) optimizers wy(A) converge to the uniform probability measure, for any
N
compact A C Q with Ag(A) > 0.



» o is determined by the scaling properties of e.

» Curious: the rate is necessarily a power function, up to a slowly-varying
factor:
t(N) = @(N) - N7

» Adding weight works too: if n: Q — [ho, o0], hg > 0,

Z(x+ aqgin) = {n(y) - [(5)] ye (x+aqd)},

then
min Z < Le(x + aqy) < maxZ

implies
Ce

SO Garay

for all compact A C Q.



» For long-range interactions we had

1 . _
B = [[ Iyl duGout), N oo
A
» Extend e from discrete configurations to all measures:

e(wn,A), p= % Zi Ox;i
400, otherwise,

eN(H’a A) = {

» Consider
I CN(-, A)
im
N— oo t(N)

(limit of functionals)



Gamma-convergence

» The functional
pes G / n(x) B(x)™7 dAg(x)
A

with
h=du/d\y

is the continuous counterpart of the discrete problem now.

» It is the Gamma-limit of ey, so in particular

lim] i&fW > G /A n(x) h(x)7 dAg(x)

when py—>p1, and for some sequence {u}} the equality is achieved



A tale of two problems

» optimal quantizers
» Riesz interactions
» Persson-Strang meshing algorithm



A tale of three problems

Nobody expects the Spanish inquisition!

Figure: A result of Monty Python (1970)




Persson-Strang meshing algorithm

1-2: Distribute points 3: Triangulate 4-7: Force equilibrium
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Figure: Persson-Strang (2004)

» Dynamics with the update
Wit = why + AtF(wh),

» where F is the sum of Delaunay edge forces, which depend on edge length /

through
() =12(lb — N4,

> b= (5%, 2)"



Persson-Strang as a short-range functional

» Integral functional for the above dynamics is

N x| — xi||?
%e(w/v) _ ZZ <(1 +P). (Zi>1,/eT,- [BY [ ) e —x,-||2> ,

N
i=1j€eT; 22/:1 #T;

for a fixed P > 0 and the Delaunay edges connecting (x;, x;) with j € T;.

» Quadratic scaling means 0 = —2/d, —1 < o < 0, so the optimal
configurations wp(A) now denote maximizers of e(wy).

» With the additional assumption that T; C /; x for some large k, we obtain
asymptotic characterization for the maximizers.



Theorem (Hardin-Saff-V, 2020+)

Suppose d > 3 and T; C I x for all i. Then the maximizers of Persson-Strang
with weight n satisfy

2/d
: _ d/2
NS T NI Ce (/An / dAd)

1-2/d

with the optimal configurations converging to n , normalized.

Question
What are the asymptotics for d = 27




Shimada-Gossard algorithm

» Shimada-Gossard (1998) proposed a meshing algorithm based on packing
interacting bubbles.
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Figure: The graph of the “interbubble force".

> Andrade-Vyas-Shimada (2015) packs anisotropic bubbles!



Shimada-Gossard with nonuniform density
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Figure: Packed bubbles and their Delaunay triangulation.



Some open problems

» What other short-range interactions are there? For example, in
Petrache-Serfaty (2017), it is shown that the asymptotics of the second-order
term for the Riesz energy, d — 2 < s < d, is determined by

Cod / R/ d\g(x)

with h = du*/d\g, the density of the minimizer of

s [ [ Ix= 317 duduty) + [ V) dut)

» Is it possible to bound the degree of the Delaunay mesh in Persson-Strang?
» Can Shimada-Gossard be treated within the same framework?

» What about angles, degrees in Delaunay triangulations of Riesz minimizers?

$



Second-order term of the Riesz energy behaves as a short-range interaction.

Conjecture

Optimizers of the Shimada-Gossard interaction are uniformly distributed.



Thank you!

Graf, S., & Luschgy, H. (2000). Foundations of quantization for probability
distributions. Berlin; New York: Springer.

Borodachov, S. V., Hardin, D. P., & Saff, E. B. (2019). Discrete energy on
rectifiable sets. Springer.

Gruber, P. M. (2004). Optimum quantization and its applications. Advances in
Mathematics, 186(2), 456—497. doi:10.1016/j.aim.2003.07.017



