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in the most regular way in [0,1]9? Or how do we distribute sets of
points most regularly?

There are many different ways of measuring this regularity.
Certainly a very popular one is discrepancy. It is (1) geometrically
meaningful and (2) connected to practical applications via the
Koksma-Hlawka inequality

‘/{ . dx——fok < Dp(x) - Var(f),
0,1

where Dy is the discrepancy and Var denotes Hardy-Krause
variation. Hardy-Krause is tricky: it tends to grow exponentially in
the dimension.
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The point of this talk is to discuss a new type of notion. | propose
we look at something called the Wasserstein distance

N
1
=W (N kz_:léxk, dx) as a measure of regularity.

It is (1) geometrically meaningful and (2) connected to practical
applications via what is known as the Kantorovich-Rubinstein
duality

< Wi - ||VfHLoo

N
f(x)dx — —
/[071]d N Z

k=1

Moreover, this inequality is sharp. ||V ]| = is, | would argue, a lot
more natural than Hardy-Krause.
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Suppose | want to sample a function f : [0,1]*% — R. It is known
that there are point sets for which

(log M)t

Dpn ~
N N

This function is actually increasing until N ~ e?. Moreover,
Hardy-Krause variation also tends to grow quite quickly.

1 N
f(x)dx — — g Ox
/[0’1](1 ( ) Nk:l -

is not really useful until N > d9. In contrast,

N
f(x)dx — —
/[07]_14 N Z

k=1

< Dp(x) - Var(f)

has no such hidden costs. The price: Wy > N—1/9.
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The Overall Goal

» What is Optimal Transport? More precisely, what is the
Wasserstein Distance W;?

» Computing the Wasserstein Distance for some classical
sequences (which is a very nice thing: it's not some abstract
quantity, it can actually be computed)

» What does this mean for Numerical Integration?



Gaspard Monge (1746 — 1818)

1781: ‘Sur la théorie des déblais et
des remblais’

Roughly: ‘On the Theory of Rubble
and Embankments’
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The CIA File on Kantorovich (stolen from US Embassy in Tehran,
now on wikipedia)

USSR Leonid Vitul'yevich KANTOROVICH

Head, Problems Laboralory of
Economic-Mathematical Methods
and Operations Research,
Institute of Management of the
National Economy

An internationally recognized cre-
ative genius in the fields of mathemat-
ics and the application of electronic
computers to cconomic affairs, Acade-
mician Leonid Kantorovich (pro-
nounced kahntuhROHwich) has
worked at the Institute of Manage-
ment of the National Economy since
1971. He has been involved in ad-
vanced mathematical research since L
the age of 15: in 1839 he invented
linear programming, one of the most significant contributions to economic
munagement in the twentieth century. Kantorovich has spent most of his
=l lits hatiling ta win accentance for bis revolutienary conceot feom Soviet
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One unit of mass in 0 (blue), 1/3 unit of mass in a, 2/3 mass in b.
a 2b
Wi(p,v) = 373

This is the Earth Mover Distance, the physical cost. There also
exists an LP—version of this, where p > 1, which leads to the
p—Wasserstein distance

1 2 1/p
Wp(p,v) = <33p + 3bp)
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Wasserstein Distance

0 1

One unit of mass in 1/2 (blue). How much do | pay for the
transport to dx?

X —

1
Wa(u, o) = |
0
p 1/p
L dx) _1 1

= ([ 21+ )P

Holder's inequality implies that W, > W;. For this talk: feel free
to replace everything by W; (in fact, | assume that for most of the
talk the Wi and the Wa behave similarly).
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Theorem (S. 2018)

For primes p

12t 1
Wo [ 25 60 s dx | < —
(pkz_ok ) NG

This tells us that we have to move most particles roughly distance
~ p~1/2 This is in line with the heuristic that these are ‘random’.
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For primes p
-1
1% 1
W2 — (5 2 mo s dx SJ —
(,32% = ) VP

It is natural to compare this to the discrepancy

#fo<i<p-1ra<iomedr <pl

disc = sup —(b—a)
0<a<b<l p
Theorem
. log p :
disc < —— Polya-Vinogradov
/P ( )
log |
disc < 08 08P (Vaughan-Montgomery (GRH))

D
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Theorem (Cole Graham 2020)
For primes p and 2 < g <

181
Wq <Z(5k2 mod p) 5
P> P

Sl

He also pointed out that

( Zdtﬁ mod p> > \/t

which shows that this result is sharp.



Irrational Rotations: Kronecker sequences
Theorem (S 2018)

N
1 Vl9og N
1z <N§ 8 5 s 1 dx) g
n=1




Irrational Rotations: Kronecker sequences
Theorem (S 2018)

N
1 Vl0og N
W, (N > 62 moa 10 dX) SN
n=1

We also have the classical result (Bohr? Weyl?)

log N
N

Dy S



Irrational Rotations: Kronecker sequences
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N
1 Vl9og N
1z (NE 8 5 s 1 dx) g
n=1

We also have the classical result (Bohr? Weyl?)

log N
N

Dy S

Theorem (Cole Graham 2020)

For every (xp)52; in [0, 1], there are infinitely many N such that

N
1 Z Viog N
W]_ <N ot 5X,77 dX) Z c

N
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Something Very Nice

Theorem (R. Peyre, 2018)

Wa(p, dx) < [l ll gy

1 N
n = NE:I(SX;(;
n—=

then

N
2mwilx;
N Z

2\ 1/2
240 = )

This is reminiscent of the Erd6és-Turan inequality.

2 (1, dx) (Z B
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> Wasserstein Distance gives us yet another perspective on the
(ir-)regularity of distributions...

» ... and it is cheap to compute! It's classical exponential sum
estimates

2\ 1/2

1
WZ(Ma dX) ,S Zﬁ

Cole Graham (arXiv:1910.14181) has similar results on the torus,
Bence Borda (arXiv:2005.04925) on compact Lie groups.
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N
111 :
WQ(,LL, dX) S § :672 N § :e27n€x,
1#£0 k=1

The upper bound is also known as Zinterhof’s diaphony. This
allows us to easily deal with the van der Corput sequence

)

727.-.

N =
e

Theorem (Proinov)
For the van der Corput sequence

N
1 Vioeg N
W </v Z_; Sx. dx> <

N
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How to place your coffee shops?

Question. Is there a sequence (x,)%; on [0,1]? such that

N
1 _
W (N§ :5Xk,dx> < N2

k=1

(Recall, Cole Graham: on [0, 1], no sequence has < N~1))
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The Coffee Shop Problem

Theorem (Louis Brown and S, 2019)

Let d > 2 and let o € RY be badly approximable. Then the
Kronecker sequence x;, = ko mod 1 satisfies

N
1 _
Wa (N g 5Xk7 dX> Sca,d N~L/d

k=1

In d > 3, this seems to be fairly easy to do. Open Problem. But
d = 2 appears subtle, are there other constructions?
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Something Quite Nice

How does one get good estimates on

1 N
Ws (/v > 0 dx> <?

n=1
Peyre's estimate works but Dirac measures are no longer in H~1.

This has an interesting analogue in Analytic Number Theory:
Zinterhof’s Diaphony. For {xi,...,xy} C [0, 1], Zinterhof's
diaphony Fy is given by

2\ 1/2

=5y

(40

N
- Z 2milx
N
k=1

It has never been generalized to higher dimensions.
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Again Exponential Sums!

How does one get good estimates on

N
1
Ws (N Z_; brss dx> <?

We use the triangle inequality

W, (,u, dX) < W (,U> ,Unice) + WZ(Mnicev dX).

Theorem (Louis Brown and S, 2019)

For each t > 0,

Wa (1, dx)? <g inf |+ >
d
P

e_”kHzt

I1kl1?

1 N
J— 27Ti<k,X,~,>
Noe

n=1

2
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Open Problems

| think it could be interesting to revisit classical objects!
What about

» the Halton sequence?
» the Hammersley set?
» Sobol?

» (t, m,s)—nets?

Surely many of these objects satisfy

N
1 ~1/d
Ws <N;6Xk,dx> < N~Vd7

Some of them can probably be attacked via Exponential Sums?
Others (nets?) via explicit constructions?



Open Problems

| think it could be interesting to revisit classical objects!
We recall that

1 N
/[wd f(x)dx — & > ()

k=1

N
1
= <N26xk,dx> [V F| e
n=1

What if the function is twice-differentiable? Or in other
smoothness classes?
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This is another classical problem: it is known that

log V)91

(
Dy <
NN N

and the implicit constants are your enemy.

Theorem (Heinrich, Novak, Wasilkowski, Wozniakowski, 2001)
There exist {x1,...,xy} C [0,1]¢ such that

/d
Dy < —.
NS C N

Aistleitner: ¢ = 10 works (since then other improvements).
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Likewise, we have

N
1 3 Vd
Wp (N 5Xk,dX> S W as N — oo

n=1
But probably not for N = 10007

Question
Given N and d, how small can you make

1 N
W, (/v n}_:ldxk, dx>?

When N is large, some kind of lattice structure (sphere packing?)
is presumably optimal (see also Hinrichs, Novak, Ullrich,
Wozniakowski, 2016).But N = 1000 in d = 30?7 (230 >> 1000)
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The following is very classical. Let f : [0,1]¢ — R. Then there
are points {xi,...,xy} C [0,1]¢ such that

N
1 > [V F] L~

If you don't know anything about the function, this is clearly best
possible. Take

f(x) = min [Ix — x]l.
() = min_|lx = x|

The average distance from a point in [0,1]? to a point is ~ N-1/d,
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A Final Application

|Vf||L°°
/Td dx——Zf <o i

This suggests we take the points

Sukharev (1979) showed that this leads to the smallest constant.
But what if we want to take a sequence? On-line sampling?
We do not know how many points we get?
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Theorem (Louis Brown and S, 2019)

Let d > 2 and let & € RY be a badly approximable vector. Then,
for some universal ¢, > 0 and all differentiable f : T¢ — R

‘ /T dfx)dx——zf(ka < call VI IV Iy N

» Uniformly for a sequence and
» better LP—spaces.
.. this is strange. The grid should actually be the best....



Slight Improvement over a Classical Result

Theorem (Louis Brown and S, 2019)

We have, for some explicit constant ¢y depending only on the
dimension, for all differentiable f : [0,1]9 — R sampled on the

regular grid (xx)N_;

o1

=

(d-1)/d 1/d
=5 (x| < cal VAL A N
k=1

=2~ \




Slight Improvement over a Classical Result

Theorem (Louis Brown and S, 2019)

We have, for some explicit constant ¢y depending only on the
dimension, for all differentiable f : [0,1]9 — R sampled on the

regular grid (xx)N_;

o1

=

(d-1)/d 1/d
< call VAN i Iy N

DIE

k=1

=2~ \

This is sharp again (probably?): take 0 < ¢ < 1 and

f(x) = min {a,lgnigNHx —x,-H} )



On Friday

One big issue with classical discrepancy is that it is adapted to the
torus T (since we use axis-parallel rectangles). There are natural
variations on the sphere (take spherical caps) but it's not clear
what to do on a general manifold.
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On Friday

One big issue with classical discrepancy is that it is adapted to the
torus T (since we use axis-parallel rectangles). There are natural
variations on the sphere (take spherical caps) but it's not clear
what to do on a general manifold.

In contrast, the Wasserstein distance does not care very much
about the underlying background. This makes it a stable notion.
But there are lots of problems on, say, S? as well, and we'll discuss
some of them on Friday.



THANK YOU!




