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The particle dynamics

Given a smooth, closed, non-self-intersecting curve

x(z) R R x(z+D)=x(z)  [¥(z)|=1

{x(z)}L; =z = z(t) : N moving particles on the curve

The particle dynamics

— _N- ZVW ) —x(25)) - x'(%)
JF1

Repulsion potential (Riesz type) W(x) =W(|x|) = s > 1| hyper-singular




The total energy

The total energy E=FE(Z):=N"*" Z W(x(z) —x(2;))
1<e<y<N
Gradient flow structure 7 = —NVE(Z) 7 = (21,2, ...
L - . 1 o
Energy dissipation law E=VEZ) 7= ~ Z 2]

1

Expected large time behavior: convergence to a local energy minimizer



The total energy

— F(Z) .= N5} W (x(z;) — _ _ X
2 x(2))) W () = W(Jx]) = ™
1<1<gy<N
. . >3
Integrable 1 hyper-singular
has a formal continuum limit: What should be expected for large N?

_/_/W p(y)dyp(z)dz



Previous results: energy minimizers

* The “Poppy-seed Bagel Theorem” (Hardin-Saff 05°, Borodachov 12°): For
hyper-singular Riesz energy of an m-dimensional rectifiable set, the global
energy minimizer is almost a uniform distribution, when N is large.

manifold dimension m = 2

hyper-singular s > m




Previous results: mean-field limit

x|

— _N-— ZVW —x(z)) - X' (2) Wix)=W(x|) =

S
J#1

* In the hyper-singular case, the interaction becomes essentially local when
N Is large

e As N — oo, one can describe the particles by a particle density function p(t, 2)

» The mean-field limit (Oelschlager 90°): on the real line, p(t,z) solves the
porous medium equation

Op = ((5)0.- (PSH)
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When N is large, the strong local repulsion enforces the particles to be
locally uniformly distributed, according to some macroscopic density p(z)

For an interval [ withlength ¢

. =T e J(Np)I™> 52
N1 2 — 2 ~ N—s—1 . J/( _ s+1g
2.2 NTTHONp) - ) - 20(s)p™"0
zi €1 j#i JE€EZL,j 70
Therefore  E(Z) ~ ((s) / p*Thdz. (s) =i C(s)

As the gradient flow of this energy, one gets the porous medium equation



Our result g -

Zi=—N7° Z VIV(x(2) — x(25)) - X' (23)
J7T

« Theorem (Hardin-Saff-S.-Tadmor 20°): Forany € > 0, there exists Vg
depending on €, S and the curve, such that the following holds for N > Ny

Energy almost converges to ~ C
the minimal energy E(t) < ¢(s)(1 +¢€), Vit i

€

gives a convergence rate like O(1/t)
iIndependent of N!

e Also,for «a € R and 0< L <1

Particles almost converge to #{i: [z, 211) Cla,a+ L)}
the uniform distribution N

L| < [L(l —L)i(s)} (20




Main difficulties

 The gradient flow could be trapped into local energy minimizers / saddles

 Mean-field limits cannot be applied because they are finite-time results:
the error often grows exponentially in time

 \When the curve is complicated, W restricted on the curve may lose
convexity



Strategy of proof

* The interaction should be essentially local. Control the error from the
“curvature effects”.

* Find intuitions from the mean-field limit, and seek for analogues for
particles

e The total momentum of an interval of mass

 Maximum principle



Ot p = C(S)aZZ(PS+1) 0..(p°") = 8?62(/062(/08))

transport velocity

lead to energy dissipation



/zs ( S + 1<(S)8Z(p3)) /O(t7 Z) dz = <(5)(,0(t, ZM)S_I_l—,O(t, ZS)5+1) ~ 0

S

 Lower bound on energy dissipation rate:

d

d +1 . (J(=0.(p))pdz)”
d¢ '

1
= ="l [oineoa: < les).

 Then p(t,z)) cannot be large for all time

* Maximum principle: once p(t,2n) gets small, it cannot become large again



Part 1: “total repulsion cut”

 Consider points 2o <---<zny€eR :
o000 *o———0 090

 [he total repulsion at the cut %k, Tk+1 Ty e

Pk :Pk(ilf(),...,df]\[) g Z (.CE] _Zlfi)_s_l

i, 0<i<k<j<N

e Lemma: Forany ¢ > 0 ,ifNislarge,thenforany 0O0=2ay<---<zay=1
there exists an index 7¢ such that (z;.,z;.11) (€1, 1 —€1) # 0

P < (1+ €)C(3)NS+1
— exactly the total repulsion
for uniformly distributed particles



A min-max argument

Fm(x’iL-l—lv e 7x’iR—1) - min Py g(mi[ﬁl—l? ce 7513723—1) L= Z (xj — 377;)_8

11 <k<ip—1
L=PSER ij: 0<i<j<N

 The unique maximum of £, is achieved at the same point as the unique
minimum of & , characterized by

P =---=P,__,
changein P_k: 4+ 44+ + - + & is convex
o—eoeoo 4—‘/4 = -> unique minimum at V& = ()

suppose P_k>F_m here




Part 2: analogue of maximum principle

() = min (ze1(t) = =(0), pu(t) = N;(t)

* Closest pairwise distance: an analogue of the maximal density

* Lemma: : 1, s>2;
—6§>—-CN N, % N,:=< loghN, s=2;

d 5
very small quantity N2 1<s<2

* This almost says that the "maximal density” never increases



d

 Lemma: when N is large, if E(S <1 then

i s iR
YN =T = () (1= e iag 1= argmin, (24, — %)

v=1r, J=tp+1

e If “maximal density” is not decreasing very fast, then Lemma says that the
“total repulsion” at the maximal density point is as large as the continuum
case.

e If “maximal density” Iis decreasing very fast, then it helps us: it cannot go
back to large values.



Proof of the lemmas

The best possible way of keeping § not increasing is to pack particles near 1,
as dense as possible

In this case, one recovers the continuum case, and one can compute the
“total repulsion” like a uniform distribution

Otherwise, if there is a defect, then delta has to decrease very fast

a possible defect?



Handling the “curvature effect”

« Lemma: Fory, z being close enough,

VW(x(y) —x(2)) - x"(y) = W'y — 2) 1+ K(y)ly — )| < Crly — 27"

forcing fromztoy as the real line with curvature effect S—2 4 N2
k(z) = x"(2)]

(YW (x(y) = x(2)) - % () = W'(y = 2)(1 + w(w)ly — =)
— (YW x(@) —x(2)) K (@) = WG~ 2)(1+ R )]~ =)
.

<Crmin{d(y, 2),d(y,2)} " - ly — g

* Proof by Taylor expansions...



Proof of main result

When the "maximal density” is not decreasing
too fast, we have

Y Lz clpy—1—€)s0-N (1) fan ()

This provides energy dissipation

d
—E() < —A((par = 1 = €)0)°
L
Use Lemma: E(Z) < ((s)(1 +¢€)p5, to
close the estimate

total
repulsion

weak W %
total f -
repulsion = £

Construct Lyapunov functional for exceptional
cases (maximal density decrease fast)




Energy convergence implies uniform distribution
» Theorem: E(Z) < ((s)(1+¢€) implies

#{1: |2i,2i41) Cla,a+ L)} 1l < [L(l ) L)f(s)} 1/2 (20)1/2

* Introduce FE*(z) .= ot 2 [xX(Ei) —x(z)




Lemma: s 'k < E(Z) EYZ) + s Y(C(s;N) — 1) < E(Z)

Therefore  sEY(Z) <1+|((s;N)e

. . 1
Write E'(Z) = T ZW(dz‘), W(z) = —. d; = 2it1 — 2

Taylor expansion of W at 1/N:

1 L 1 S 17 1 2
sE*(Z) =1+ S T Z;W (&) (d; N)

Use convexity of W to obtain smallness of d; ~



Future work

Exponential convergence rate?
Uniform-in-time mean field limit"?

Convergence to local equilibrium (local uniform distribution) in very short
time?

Extension to multi-dimensions?



