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The particle dynamics
• Given a smooth, closed, non-self-intersecting curve 


•                                    : N moving particles on the curve


• The particle dynamics


• Repulsion potential (Riesz type)

x(z + 1) = x(z)
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where the particles are interacting through the potential

W (x) = W (|x|) =
|x|

�s

s
, (1.2)

which is a power-law repulsion potential, assumed to be hyper-singular: s > 1.
Here x(z), z 2 R in Rd is a unit-length, smooth, closed, non-self-intersecting
curve with 1-periodic arc-length parametrization; i.e., |x0(z)| = 1 and x(z+1) =
x(z) for all z 2 R. The N -particle configuration {x(zi)}N

i=1 is represented by
the parameters Z = (z1, z2, . . . , zN), where zi = zi(t) are real-valued functions
of the time t 2 R>0 for i = 1, 2, . . . , N . The system (1.1) can be rewritten as a
gradient flow of the form

Ż = �NrE(Z), (1.3)

for the energy

E = E(Z) := N
�s�1

X

16i<j6N

W (x(zi) � x(zj)), (1.4)

which satisfies the energy dissipation

Ė = rE(Z) · Ż = �
1

N

X

i

|żi|
2
. (1.5)

Without loss of generality, we assume that anN -point configuration parametriza-
tion Z = (z1, z2, . . . , zN) is ordered as

z1 < · · · < zN < z1 + 1, (1.6)

and observe that if the initial data (at t = 0) satisfies (1.1), then (1.6) holds for
all time due to the singularity of the interaction potential W at 0. Consistent
with the periodicity of x, we extend zi to all i 2 Z by setting zi+N = zi + 1 so
that x(zi+N) = x(zi).
The determination of optimal N -point configurations confined to a curve or

more generally a manifold, whose pairwise interactions are governed by the Riesz
s-potential W in (1.2) is sometimes referred to when the manifold is the unit
sphere Sd

⇢ Rd and s > 0, as the “generalized Thomson problem.” Determining
the minimal energy positions for such points explicitly is a notoriously di�cult
problem for which only some very special cases are known, even for “small”
values of N (see [5], [3]). One of these cases is that of the unit circle in R2, for
which a simple convexity argument shows that N distinct equally spaced points
(N -th roots of unity) are the unique (up to rotation)N -point configurations that
minimize the energy for all s > 0 and all N > 2. There are, however, several
well-known theorems that deal with the asymptotics as N ! 1 for optimal
configurations on manifolds in Euclidean space. For curves in Rd in the hyper-
singular case s > 1, the following theorem was proved by Martinez-Finkelstein
et. al. in [8].
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Abstract. We investigate the large time behavior of N particles restricted
to a smooth closed curve in Rd and subject to a gradient flow with respect to
Euclidean hyper-singular repulsive Riesz s-energy with s > 1. We show that
regardless of their initial positions, for all N and time t large, their normalized
Riesz s-energy will be close to the N -point minimal possible. Furthermore,
the distribution of such particles will be close to uniform with respect to
arclength measure along the curve.
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1. Introduction

In this paper we consider the first-order N -particle model

żi = �N
�s

X

j 6=i

rW (x(zi) � x(zj)) · x0(zi), (1.1)
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hyper-singular
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The total energy

• The total energy


• Gradient flow structure


• Energy dissipation law 


• Expected large time behavior: convergence to a local energy minimizer
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gradient flow of the form

Ż = �NrE(Z), (1.3)

for the energy

E = E(Z) := N
�s�1

X

16i<j6N

W (x(zi) � x(zj)), (1.4)

which satisfies the energy dissipation

Ė = rE(Z) · Ż = �
1

N

X

i

|żi|
2
. (1.5)

Without loss of generality, we assume that anN -point configuration parametriza-
tion Z = (z1, z2, . . . , zN) is ordered as

z1 < · · · < zN < z1 + 1, (1.6)

and observe that if the initial data (at t = 0) satisfies (1.1), then (1.6) holds for
all time due to the singularity of the interaction potential W at 0. Consistent
with the periodicity of x, we extend zi to all i 2 Z by setting zi+N = zi + 1 so
that x(zi+N) = x(zi).
The determination of optimal N -point configurations confined to a curve or

more generally a manifold, whose pairwise interactions are governed by the Riesz
s-potential W in (1.2) is sometimes referred to when the manifold is the unit
sphere Sd

⇢ Rd and s > 0, as the “generalized Thomson problem.” Determining
the minimal energy positions for such points explicitly is a notoriously di�cult
problem for which only some very special cases are known, even for “small”
values of N (see [5], [3]). One of these cases is that of the unit circle in R2, for
which a simple convexity argument shows that N distinct equally spaced points
(N -th roots of unity) are the unique (up to rotation)N -point configurations that
minimize the energy for all s > 0 and all N > 2. There are, however, several
well-known theorems that deal with the asymptotics as N ! 1 for optimal
configurations on manifolds in Euclidean space. For curves in Rd in the hyper-
singular case s > 1, the following theorem was proved by Martinez-Finkelstein
et. al. in [8].
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has a formal continuum limit: What should be expected for large N?

E[⇢] =

Z

T

Z

T
W (x(z)� x(y))⇢(y)dy⇢(z)dz



Previous results: energy minimizers

• The “Poppy-seed Bagel Theorem” (Hardin-Saff 05’, Borodachov 12’): For 
hyper-singular Riesz energy of an m-dimensional rectifiable set, the global 
energy minimizer is almost a uniform distribution, when N is large.
8.5 The Poppy-Seed Bagel Theorem: Discussion 339

Fig. 8.5.1. Computed near minimal s-energy configurations consisting of 4000
points on a torus for s = 0.1, 1, 2, and 4. torus0.1
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We now turn to the main result of this chapter which concerns the large N
limits of normalized minimal s-energy and associated configurations for a wide
class of d-dimensional manifolds A in the hypersingular case s > d. The hy-
persingular case s = d will be treated in the next chapter (see Theorem 9.5.4).
Roughly speaking, the poppy-seed bagel theorem asserts that for a large class
of sets A, minimum energy configurations are asymptotically (as N ! 1)
uniformly distributed with respect to d-dimensional Hausdor↵ measure on A
when the parameter s is larger than or equal to the dimension d of A. The
name derives from the example of a torus embedded in 3-dimensions as il-
lustrated in Figure 8.5.1; the cases s = 2.0 and s = 4.0 display approximate
uniformity (with the respect to the 2-dimensional surface area) of 4000 near
energy minimizing points, while the non-uniformity of such configurations in
the cases s = 0.1 and s = 1.0 reflect the non-uniformity of the s-equilibrium
measure (see Theorem 4.4.9).

We next describe the class of sets for which the poppy-seed bagel theorem
applies.

d_rec Definition 8.5.1. A set A ⇢ R
p is said to be d-rectifiable (d  p), if A is the

image of a bounded set B ⇢ R
d under a Lipschitz mapping  ; that is, there

is some constant L such that

| (x)�  (y)|  L|x� y|, x, y 2 B.

A set A ⇢ R
p is called (Hd, d)-rectifiable if Hd(A) < 1 and A is the union

of at most a countable collection of d-rectifiable sets and a set of Hd-measure
zero.

manifold dimension m = 2

hyper-singular s > m



Previous results: mean-field limit

• In the hyper-singular case, the interaction becomes essentially local when 
N is large


• As             , one can describe the particles by a particle density function


• The mean-field limit (Oelschlager 90’): on the real line,              solves the 
porous medium equation
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Abstract. We investigate the large time behavior of N particles restricted
to a smooth closed curve in Rd and subject to a gradient flow with respect to
Euclidean hyper-singular repulsive Riesz s-energy with s > 1. We show that
regardless of their initial positions, for all N and time t large, their normalized
Riesz s-energy will be close to the N -point minimal possible. Furthermore,
the distribution of such particles will be close to uniform with respect to
arclength measure along the curve.
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1. Introduction

In this paper we consider the first-order N -particle model

żi = �N
�s

X

j 6=i

rW (x(zi) � x(zj)) · x0(zi), (1.1)
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where the particles are interacting through the potential

W (x) = W (|x|) =
|x|

�s

s
, (1.2)

which is a power-law repulsion potential, assumed to be hyper-singular: s > 1.
Here x(z), z 2 R in Rd is a unit-length, smooth, closed, non-self-intersecting
curve with 1-periodic arc-length parametrization; i.e., |x0(z)| = 1 and x(z+1) =
x(z) for all z 2 R. The N -particle configuration {x(zi)}N

i=1 is represented by
the parameters Z = (z1, z2, . . . , zN), where zi = zi(t) are real-valued functions
of the time t 2 R>0 for i = 1, 2, . . . , N . The system (1.1) can be rewritten as a
gradient flow of the form

Ż = �NrE(Z), (1.3)

for the energy

E = E(Z) := N
�s�1

X

16i<j6N

W (x(zi) � x(zj)), (1.4)

which satisfies the energy dissipation

Ė = rE(Z) · Ż = �
1

N

X

i

|żi|
2
. (1.5)

Without loss of generality, we assume that anN -point configuration parametriza-
tion Z = (z1, z2, . . . , zN) is ordered as

z1 < · · · < zN < z1 + 1, (1.6)

and observe that if the initial data (at t = 0) satisfies (1.1), then (1.6) holds for
all time due to the singularity of the interaction potential W at 0. Consistent
with the periodicity of x, we extend zi to all i 2 Z by setting zi+N = zi + 1 so
that x(zi+N) = x(zi).
The determination of optimal N -point configurations confined to a curve or

more generally a manifold, whose pairwise interactions are governed by the Riesz
s-potential W in (1.2) is sometimes referred to when the manifold is the unit
sphere Sd

⇢ Rd and s > 0, as the “generalized Thomson problem.” Determining
the minimal energy positions for such points explicitly is a notoriously di�cult
problem for which only some very special cases are known, even for “small”
values of N (see [5], [3]). One of these cases is that of the unit circle in R2, for
which a simple convexity argument shows that N distinct equally spaced points
(N -th roots of unity) are the unique (up to rotation)N -point configurations that
minimize the energy for all s > 0 and all N > 2. There are, however, several
well-known theorems that deal with the asymptotics as N ! 1 for optimal
configurations on manifolds in Euclidean space. For curves in Rd in the hyper-
singular case s > 1, the following theorem was proved by Martinez-Finkelstein
et. al. in [8].
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Our second main result shows that upper bounds on the energy of N -point
configurations such as provided by Theorem 2.1 impose geometrical constraints
on the distribution of these configurations showing that they are near optimal
configurations.

Theorem 2.2. For given ✏ > 0 and s > 1, there is some N0 depending on s

and ✏ such that if N > N0 and Z = {zi}
N
i=1 satisfies

E(Z) 6 ⇣̃(s)(1 + ✏), (2.3)

then the mean absolute deviation of di = zi+1 � zi, i = 1, 2, . . . , N , satisfies

1

N

NX

i=1

����di �
1

N

���� 6 2

 
2⇣̃(s)

s+ 1

!1/2
✏
1/2

N
, (2.4)

and for all a 2 R and 0 < L < 1, we have
����
#{i : [zi, zi+1) ⇢ [a, a+ L)}

N
� L

���� 6
h
L(1 � L)⇣̃(s)

i1/2
(2✏)1/2. (2.5)

Consequently, under the assumptions of Theorem 2.1, the conclusions (2.4) and
(2.5) hold for N su�ciently large and t > C/✏.

The proof of Theorem 2.1 is given in Sections 3-6. Below we discuss the
motivation for the argument used in its proof. The proof of Theorem 2.2 is
given in Section 7.

2.2. Outline of the proof of Theorem 2.1. It is known that the global
minimizer of E defined in (1.4) converges to the uniform distribution as N !

1; therefore it is natural to expect that, for large N , the gradient flow (1.1)
converges to some limiting configuration which is nearly equally distributed.
However, we encounter the following di�culties:

• When the curve x(z) is not convex, the energy E is not necessarily a
convex function of {zi}.

• The global minimizer of E may not be unique, and there may be local
minimizers and saddle points.

To handle these di�culties, we manage to extract some ideas from the mean
field limit of (1.1). In fact, it is proved in [9] that the analog of (1.1) on the
real line has the porous medium equation

@t⇢ = ⇣(s)@zz(⇢
s+1) (2.6)

as its mean field limit, under certain assumptions on the initial data. This mean
field limit can be understood intuitively as follows:

• Due to the fast decay of W (x) for large |x|, the particle interaction is
localized when N is large, meaning that typically the interaction between
particles with large distances can be neglected, at least for a fixed time

N ! 1



• When N is large, the strong local repulsion enforces the particles to be 
locally uniformly distributed, according to some macroscopic density


• For an interval        with length 


• Therefore


• As the gradient flow of this energy, one gets the porous medium equation
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interval [0, T ]. The same holds for the curvature e↵ect, i.e., the di↵erence
between (1.1) and its analog on the real line.

• Due to the strong localized repulsion, particles tend to distribute locally
in a uniform way, similar to the local equilibrium in kinetic theory. This
means, in a short interval I of length � (which is still long enough to
contain a large number of particles), the particles are approximately uni-
formly distributed. However, the particle density may still have variation
on a macroscopic scale, according to some density profile ⇢(t, z).

• In a short interval I of length �, if the particles inside are uniformly
distributed with density ⇢ (i.e., the distance between adjacent parti-
cles is approximately 1/(N⇢), and the total number of particles inside
is approximately �N⇢), then the total energy of the particles inside is
approximately

N
�s�1

X

zi2I

X

j 6=i

|zi � zj|
�s

s
⇡ N

�s�1(�N⇢) ·

X

j2Z,j 6=0

|j/(N⇢)|�s

s
= 2⇣̃(s)⇢s+1

�.

(2.7)
Summing all the short intervals (and symmetrizing in i and j), this gives
a Riemann sum which approximates

E(Z) ⇡ ⇣̃(s)

Z
⇢
s+1 dz. (2.8)

Then notice that (1.1) is the gradient flow of E, while (2.6) is exactly
the Wasserstein-2 gradient flow of the above right-hand side [RHS].

Although mean field limits are generally not true on the whole time axis
[0,1), we can indeed get some ideas from the energy structure of (2.6). To
motivate the proof of Theorem 2.1, we start from the following two properties
of the porous medium equation (2.6):

• Suppose at time t, there are two points zM and zS such that ⇢(t, zM) >
⇢(t, zS) (assuming zM < zS without loss of generality). Then

Z zS

zM

⇣
�
s+ 1

s
⇣(s)@z(⇢

s)
⌘
·⇢(t, z) dz = ⇣(s)(⇢(t, zM)s+1

�⇢(t, zS)
s+1) > 0, (2.9)

where the term �
s+1
s ⇣(s)@z(⇢s) is the transport velocity of the porous

medium equation, by writing @zz(⇢s+1) = s+1
s @z(⇢@z(⇢s)). This means

that we have a lower bound on the energy dissipation rate:

d

dt

Z
⇢
s+1 dz = �

s+ 1

s
⇣(s)

Z
|@z(⇢

s)|2⇢ dz

6 �
s+ 1

s
⇣(s) ·

�R
(�@z(⇢s))⇢ dz

�2
R
⇢ dz

.

(2.10)
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high density region low density region
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Theorem 1.1. If s > 1 and � is a rectifiable Jordan arc or closed curve em-
bedded in Rd of length one with arc length parametrization x(s), then

lim
N!1

minE(Z) = ⇣(s)/s,

where the minimum is taken over all N-point configurations {x(zi)}N
i=1 on �

and ⇣(s) is the classical Riemann zeta function. Moreover, N-point minimizing
configurations {x(z⇤i )}

N
i=1 are asymptotically uniformly distributed with respect

to arc length and, with d
⇤
i := z

⇤
i+1 � z

⇤
i , satisfy

NX

i=1

����d
⇤
i �

1

N

���� ! 0 as N ! 1. (1.7)

This theorem together with its refinement [2], which is one of the main moti-
vations for the present work, is a special case of the so-called Poppy-seed bagel
theorem (see [3]) which applies to general d-rectifiable manifolds embedded in
Rp

, d 6 p.

As stated in Theorem 1.1, any minimizer of the energy E defined in (1.4) has
to be almost uniformly distributed. This paper studies the large time behavior
of (1.1); namely, whether {zi(t)}i2Z are “close to equally spaced” as t ! 1.

2. Main results

We will use the following quantities depending on s:

⇣(s) :=
1X

i=1

i
�s
, ⇣̃(s) :=

⇣(s)

s
. (2.1)

Every constant C or c appearing in this paper depends only on s and the
curve x(z), if not stated otherwise.

2.1. Statement of main results. Our first main result is the following.

Theorem 2.1. Let x(z) be a non-self-intersecting C
4 closed curve, and let

s > 1. For any ✏ > 0, there exists N0, depending on ✏, s and the curve x(z),
such that the following holds for N > N0: for the solution to (1.1) with initial
data satisfying (1.6), there exists a positive constant C such that

E(t) 6 ⇣̃(s)(1 + ✏), 8t > C

✏
. (2.2)

This theorem quantifies the convergence rate of the solution to (1.1) to an
almost minimal energy state. In fact, since Lemma 4.3 shows that the global
minimum of E is at least ⇣̃(s)(1�✏), Theorem 2.1 shows that, after time O(1/✏),
the energy will decay to the global minimum up to an error of O(✏). This can
be viewed as an energy decay rate of O(1/t) being independent of the number
of particles N , as long as N is large enough.



Our result

• Theorem (Hardin-Saff-S.-Tadmor 20’): For any             , there exists         
depending on          and the curve, such that the following holds for            : 


• Also, for               and 
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In this paper we consider the first-order N -particle model
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Theorem 1.1. If s > 1 and � is a rectifiable Jordan arc or closed curve em-
bedded in Rd of length one with arc length parametrization x(s), then

lim
N!1

minE(Z) = ⇣(s)/s,

where the minimum is taken over all N-point configurations {x(zi)}N
i=1 on �

and ⇣(s) is the classical Riemann zeta function. Moreover, N-point minimizing
configurations {x(z⇤i )}

N
i=1 are asymptotically uniformly distributed with respect

to arc length and, with d
⇤
i := z

⇤
i+1 � z

⇤
i , satisfy

NX

i=1

����d
⇤
i �

1

N

���� ! 0 as N ! 1. (1.7)

This theorem together with its refinement [2], which is one of the main moti-
vations for the present work, is a special case of the so-called Poppy-seed bagel
theorem (see [3]) which applies to general d-rectifiable manifolds embedded in
Rp

, d 6 p.

As stated in Theorem 1.1, any minimizer of the energy E defined in (1.4) has
to be almost uniformly distributed. This paper studies the large time behavior
of (1.1); namely, whether {zi(t)}i2Z are “close to equally spaced” as t ! 1.

2. Main results

We will use the following quantities depending on s:

⇣(s) :=
1X

i=1

i
�s
, ⇣̃(s) :=

⇣(s)

s
. (2.1)

Every constant C or c appearing in this paper depends only on s and the
curve x(z), if not stated otherwise.

2.1. Statement of main results. Our first main result is the following.

Theorem 2.1. Let x(z) be a non-self-intersecting C
4 closed curve, and let

s > 1. For any ✏ > 0, there exists N0, depending on ✏, s and the curve x(z),
such that the following holds for N > N0: for the solution to (1.1) with initial
data satisfying (1.6), there exists a positive constant C such that

E(t) 6 ⇣̃(s)(1 + ✏), 8t > C

✏
. (2.2)

This theorem quantifies the convergence rate of the solution to (1.1) to an
almost minimal energy state. In fact, since Lemma 4.3 shows that the global
minimum of E is at least ⇣̃(s)(1�✏), Theorem 2.1 shows that, after time O(1/✏),
the energy will decay to the global minimum up to an error of O(✏). This can
be viewed as an energy decay rate of O(1/t) being independent of the number
of particles N , as long as N is large enough.
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Our second main result shows that upper bounds on the energy of N -point
configurations such as provided by Theorem 2.1 impose geometrical constraints
on the distribution of these configurations showing that they are near optimal
configurations.

Theorem 2.2. For given ✏ > 0 and s > 1, there is some N0 depending on s

and ✏ such that if N > N0 and Z = {zi}
N
i=1 satisfies

E(Z) 6 ⇣̃(s)(1 + ✏), (2.3)

then the mean absolute deviation of di = zi+1 � zi, i = 1, 2, . . . , N , satisfies
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and for all a 2 R and 0 < L < 1, we have
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(2✏)1/2. (2.5)

Consequently, under the assumptions of Theorem 2.1, the conclusions (2.4) and
(2.5) hold for N su�ciently large and t > C/✏.

The proof of Theorem 2.1 is given in Sections 3-6. Below we discuss the
motivation for the argument used in its proof. The proof of Theorem 2.2 is
given in Section 7.

2.2. Outline of the proof of Theorem 2.1. It is known that the global
minimizer of E defined in (1.4) converges to the uniform distribution as N !

1; therefore it is natural to expect that, for large N , the gradient flow (1.1)
converges to some limiting configuration which is nearly equally distributed.
However, we encounter the following di�culties:

• When the curve x(z) is not convex, the energy E is not necessarily a
convex function of {zi}.

• The global minimizer of E may not be unique, and there may be local
minimizers and saddle points.

To handle these di�culties, we manage to extract some ideas from the mean
field limit of (1.1). In fact, it is proved in [9] that the analog of (1.1) on the
real line has the porous medium equation

@t⇢ = ⇣(s)@zz(⇢
s+1) (2.6)

as its mean field limit, under certain assumptions on the initial data. This mean
field limit can be understood intuitively as follows:

• Due to the fast decay of W (x) for large |x|, the particle interaction is
localized when N is large, meaning that typically the interaction between
particles with large distances can be neglected, at least for a fixed time
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Theorem 1.1. If s > 1 and � is a rectifiable Jordan arc or closed curve em-
bedded in Rd of length one with arc length parametrization x(s), then

lim
N!1

minE(Z) = ⇣(s)/s,

where the minimum is taken over all N-point configurations {x(zi)}N
i=1 on �

and ⇣(s) is the classical Riemann zeta function. Moreover, N-point minimizing
configurations {x(z⇤i )}

N
i=1 are asymptotically uniformly distributed with respect

to arc length and, with d
⇤
i := z

⇤
i+1 � z

⇤
i , satisfy

NX

i=1

����d
⇤
i �

1

N

���� ! 0 as N ! 1. (1.7)

This theorem together with its refinement [2], which is one of the main moti-
vations for the present work, is a special case of the so-called Poppy-seed bagel
theorem (see [3]) which applies to general d-rectifiable manifolds embedded in
Rp

, d 6 p.

As stated in Theorem 1.1, any minimizer of the energy E defined in (1.4) has
to be almost uniformly distributed. This paper studies the large time behavior
of (1.1); namely, whether {zi(t)}i2Z are “close to equally spaced” as t ! 1.

2. Main results

We will use the following quantities depending on s:

⇣(s) :=
1X

i=1

i
�s
, ⇣̃(s) :=

⇣(s)

s
. (2.1)

Every constant C or c appearing in this paper depends only on s and the
curve x(z), if not stated otherwise.

2.1. Statement of main results. Our first main result is the following.

Theorem 2.1. Let x(z) be a non-self-intersecting C
4 closed curve, and let

s > 1. For any ✏ > 0, there exists N0, depending on ✏, s and the curve x(z),
such that the following holds for N > N0: for the solution to (1.1) with initial
data satisfying (1.6), there exists a positive constant C such that

E(t) 6 ⇣̃(s)(1 + ✏), 8t > C

✏
. (2.2)

This theorem quantifies the convergence rate of the solution to (1.1) to an
almost minimal energy state. In fact, since Lemma 4.3 shows that the global
minimum of E is at least ⇣̃(s)(1�✏), Theorem 2.1 shows that, after time O(1/✏),
the energy will decay to the global minimum up to an error of O(✏). This can
be viewed as an energy decay rate of O(1/t) being independent of the number
of particles N , as long as N is large enough.

Energy almost converges to 
the minimal energy

Particles almost converge to 
the uniform distribution
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Our second main result shows that upper bounds on the energy of N -point
configurations such as provided by Theorem 2.1 impose geometrical constraints
on the distribution of these configurations showing that they are near optimal
configurations.

Theorem 2.2. For given ✏ > 0 and s > 1, there is some N0 depending on s

and ✏ such that if N > N0 and Z = {zi}
N
i=1 satisfies

E(Z) 6 ⇣̃(s)(1 + ✏), (2.3)

then the mean absolute deviation of di = zi+1 � zi, i = 1, 2, . . . , N , satisfies

1

N

NX

i=1

����di �
1

N

���� 6 2

 
2⇣̃(s)

s+ 1

!1/2
✏
1/2

N
, (2.4)

and for all a 2 R and 0 < L < 1, we have
����
#{i : [zi, zi+1) ⇢ [a, a+ L)}

N
� L

���� 6
h
L(1 � L)⇣̃(s)

i1/2
(2✏)1/2. (2.5)

Consequently, under the assumptions of Theorem 2.1, the conclusions (2.4) and
(2.5) hold for N su�ciently large and t > C/✏.

The proof of Theorem 2.1 is given in Sections 3-6. Below we discuss the
motivation for the argument used in its proof. The proof of Theorem 2.2 is
given in Section 7.

2.2. Outline of the proof of Theorem 2.1. It is known that the global
minimizer of E defined in (1.4) converges to the uniform distribution as N !

1; therefore it is natural to expect that, for large N , the gradient flow (1.1)
converges to some limiting configuration which is nearly equally distributed.
However, we encounter the following di�culties:

• When the curve x(z) is not convex, the energy E is not necessarily a
convex function of {zi}.

• The global minimizer of E may not be unique, and there may be local
minimizers and saddle points.

To handle these di�culties, we manage to extract some ideas from the mean
field limit of (1.1). In fact, it is proved in [9] that the analog of (1.1) on the
real line has the porous medium equation

@t⇢ = ⇣(s)@zz(⇢
s+1) (2.6)

as its mean field limit, under certain assumptions on the initial data. This mean
field limit can be understood intuitively as follows:

• Due to the fast decay of W (x) for large |x|, the particle interaction is
localized when N is large, meaning that typically the interaction between
particles with large distances can be neglected, at least for a fixed time
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gives a convergence rate like O(1/t)

independent of N!



Main difficulties

• The gradient flow could be trapped into local energy minimizers / saddles


• Mean-field limits cannot be applied because they are finite-time results: 
the error often grows exponentially in time 


• When the curve is complicated, W restricted on the curve may lose 
convexity



Strategy of proof

• The interaction should be essentially local. Control the error from the 
“curvature effects”.


• Find intuitions from the mean-field limit, and seek for analogues for 
particles


• The total momentum of an interval of mass


• Maximum principle
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interval [0, T ]. The same holds for the curvature e↵ect, i.e., the di↵erence
between (1.1) and its analog on the real line.

• Due to the strong localized repulsion, particles tend to distribute locally
in a uniform way, similar to the local equilibrium in kinetic theory. This
means, in a short interval I of length � (which is still long enough to
contain a large number of particles), the particles are approximately uni-
formly distributed. However, the particle density may still have variation
on a macroscopic scale, according to some density profile ⇢(t, z).

• In a short interval I of length �, if the particles inside are uniformly
distributed with density ⇢ (i.e., the distance between adjacent parti-
cles is approximately 1/(N⇢), and the total number of particles inside
is approximately �N⇢), then the total energy of the particles inside is
approximately

N
�s�1

X

zi2I

X

j 6=i

|zi � zj|
�s

s
⇡ N

�s�1(�N⇢) ·

X

j2Z,j 6=0

|j/(N⇢)|�s

s
= 2⇣̃(s)⇢s+1

�.

(2.7)
Summing all the short intervals (and symmetrizing in i and j), this gives
a Riemann sum which approximates

E(Z) ⇡ ⇣̃(s)

Z
⇢
s+1 dz. (2.8)

Then notice that (1.1) is the gradient flow of E, while (2.6) is exactly
the Wasserstein-2 gradient flow of the above right-hand side [RHS].

Although mean field limits are generally not true on the whole time axis
[0,1), we can indeed get some ideas from the energy structure of (2.6). To
motivate the proof of Theorem 2.1, we start from the following two properties
of the porous medium equation (2.6):

• Suppose at time t, there are two points zM and zS such that ⇢(t, zM) >
⇢(t, zS) (assuming zM < zS without loss of generality). Then

Z zS

zM

⇣
�
s+ 1

s
⇣(s)@z(⇢

s)
⌘
·⇢(t, z) dz = ⇣(s)(⇢(t, zM)s+1

�⇢(t, zS)
s+1) > 0, (2.9)

where the term �
s+1
s ⇣(s)@z(⇢s) is the transport velocity of the porous

medium equation, by writing @zz(⇢s+1) = s+1
s @z(⇢@z(⇢s)). This means

that we have a lower bound on the energy dissipation rate:

d

dt

Z
⇢
s+1 dz = �

s+ 1

s
⇣(s)

Z
|@z(⇢

s)|2⇢ dz

6 �
s+ 1

s
⇣(s) ·

�R
(�@z(⇢s))⇢ dz

�2
R
⇢ dz

.

(2.10)
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• Due to the strong localized repulsion, particles tend to distribute locally
in a uniform way, similar to the local equilibrium in kinetic theory. This
means, in a short interval I of length � (which is still long enough to
contain a large number of particles), the particles are approximately uni-
formly distributed. However, the particle density may still have variation
on a macroscopic scale, according to some density profile ⇢(t, z).

• In a short interval I of length �, if the particles inside are uniformly
distributed with density ⇢ (i.e., the distance between adjacent parti-
cles is approximately 1/(N⇢), and the total number of particles inside
is approximately �N⇢), then the total energy of the particles inside is
approximately
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zi2I

X

j 6=i

|zi � zj|
�s

s
⇡ N

�s�1(�N⇢) ·

X

j2Z,j 6=0

|j/(N⇢)|�s

s
= 2⇣̃(s)⇢s+1

�.

(2.7)
Summing all the short intervals (and symmetrizing in i and j), this gives
a Riemann sum which approximates

E(Z) ⇡ ⇣̃(s)

Z
⇢
s+1 dz. (2.8)

Then notice that (1.1) is the gradient flow of E, while (2.6) is exactly
the Wasserstein-2 gradient flow of the above right-hand side [RHS].

Although mean field limits are generally not true on the whole time axis
[0,1), we can indeed get some ideas from the energy structure of (2.6). To
motivate the proof of Theorem 2.1, we start from the following two properties
of the porous medium equation (2.6):

• Suppose at time t, there are two points zM and zS such that ⇢(t, zM) >
⇢(t, zS) (assuming zM < zS without loss of generality). Then
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where the term �
s+1
s ⇣(s)@z(⇢s) is the transport velocity of the porous

medium equation, by writing @zz(⇢s+1) = s+1
s @z(⇢@z(⇢s)). This means

that we have a lower bound on the energy dissipation rate:

d

dt
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Z
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6 �
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⇣(s) ·

�R
(�@z(⇢s))⇢ dz

�2
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(2.10)

zM zS

⇢(t, z)

z

total momentum = 

lead to energy dissipation



• Lower bound on energy dissipation rate:


• Then               cannot be large for all time


• Maximum principle: once              gets small, it cannot become large again
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Since the total amount of energy is finite, |⇢(t, zM) � ⇢(t, zS)| will even-
tually get small after a long time. In particular, for some large T ,
supz ⇢(T, z) will get close to the average density

R
⇢ dz/

R
dz.

• The porous medium equation (2.6) obeys the maximum principle:

sup
z

⇢(t, z) is decreasing in t. (2.11)

This means that, once supz ⇢(T, z) gets close to the average density, it
cannot become large again, which means ⇢(t, z) will be close to a uniform
distribution for all t > T .

To prove Theorem 2.1, we aim to find the analogues of the above two prop-
erties for (1.1):

• In the case of a flat T, we prove Lemma 3.1 as the counterpart of the
first property. It says, once we have an interval in which the ‘density’
(number of particles divided by interval length) is small, then we can find
a place to cut the interval, such that the total repulsion force between
left and right is small. This concept of ‘total repulsion force’ is the
counterpart of the term ⇢(t, zS)s+1 in (2.9).

• We establish Lemma 5.2 as the counterpart of the second property. It
says that the distance � between the closest pair of particles basically
cannot decrease (see (5.1), whose RHS is o(1)), in correspondence to the
decreasing property. Furthermore, for reasonable situations, we have the
lower bound (5.12) for the ‘total repulsion force’ at this closest pair of
particles, serving as the counterpart of the term ⇢(t, zM)s+1 in (2.9).

Finally, we have to deal with the finite-N e↵ect and the curvature e↵ect from
x(z), which may produce errors to the above two properties. Therefore, we
need to keep track of the N -dependence of error terms, as well as using the
smoothness of curve x(z), to show that all such error terms are small enough.

3. Lemmas on total repulsion cut

For a given set of points x0 < · · · < xN 2 R, we define the total repulsion of
the cut at xk, xk+1 by

Pk = Pk(x0, . . . , xN) :=
X

i,j: 06i6k<j6N

(xj � xi)
�s�1 (3.1)

The main purpose of this section is to prove the following lemma:

Lemma 3.1. For any 0 < ✏ 6 0.01, there exists N0 = N0(✏) such that if
N > N0, then for any 0 = x0 < · · · < xN = 1 there exists an index iS such that
(xiS , xiS+1)

T
(✏1, 1 � ✏1) 6= ; with ✏1 =

✏
3(1+s) , and

PiS 6 (1 + ✏)⇣(s)N s+1
. (3.2)
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X
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(xj � xi)
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Since the total amount of energy is finite, |⇢(t, zM) � ⇢(t, zS)| will even-
tually get small after a long time. In particular, for some large T ,
supz ⇢(T, z) will get close to the average density

R
⇢ dz/

R
dz.

• The porous medium equation (2.6) obeys the maximum principle:

sup
z

⇢(t, z) is decreasing in t. (2.11)

This means that, once supz ⇢(T, z) gets close to the average density, it
cannot become large again, which means ⇢(t, z) will be close to a uniform
distribution for all t > T .

To prove Theorem 2.1, we aim to find the analogues of the above two prop-
erties for (1.1):

• In the case of a flat T, we prove Lemma 3.1 as the counterpart of the
first property. It says, once we have an interval in which the ‘density’
(number of particles divided by interval length) is small, then we can find
a place to cut the interval, such that the total repulsion force between
left and right is small. This concept of ‘total repulsion force’ is the
counterpart of the term ⇢(t, zS)s+1 in (2.9).

• We establish Lemma 5.2 as the counterpart of the second property. It
says that the distance � between the closest pair of particles basically
cannot decrease (see (5.1), whose RHS is o(1)), in correspondence to the
decreasing property. Furthermore, for reasonable situations, we have the
lower bound (5.12) for the ‘total repulsion force’ at this closest pair of
particles, serving as the counterpart of the term ⇢(t, zM)s+1 in (2.9).

Finally, we have to deal with the finite-N e↵ect and the curvature e↵ect from
x(z), which may produce errors to the above two properties. Therefore, we
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A min-max argument

• The unique maximum of         is achieved at the same point as the unique 
minimum of       , characterized by
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Notice that the total repulsion between two infinite sets of equally distributed
points {

i
N }

1
i=0 and {�

j
N }

1
j=1 is

1X

i=0

1X

j=1

⇣
i+ j

N

⌘�s�1

= N
s+1

1X

i=1

i · i
�s�1 = ⇣(s)N s+1

. (3.3)

Therefore, Lemma 3.1 tells us that one can find an index iS such that the total
repulsion for k = iS there is at most slightly more than for equally distributed
points.
The proof of this lemma follows a min-max type argument. Let 0 6 iL <

iR 6 N be two indices. Define

Fm(xiL+1, . . . , xiR�1) := min
iL6k6iR�1

Pk, (3.4)

viewing those xi’s with i 6 iL or i > iR as fixed. Fm are defined on

RiR�iL�1
sort (xiL , xiR)

= {(xiL+1, . . . , xiR�1) 2 RiR�iL�1 : xiL < xiL+1 < · · · < xiR�1 < xiR},
(3.5)

which is a convex open set.
In the following lemma we describe the global maximum of Fm as a function

of xiL+1, . . . , xiR�1.

Lemma 3.2. The global maximum of Fm on RiR�iL�1
sort (xiL , xiR) is achieved at

the same point X⇤ = (x⇤
iL+1, . . . , x

⇤
iR�1), which is the only point satisfying

PiL = · · · = PiR�1. (3.6)

Furthermore, X⇤ is the unique global minimizer of the energy functional

E(xiL+1, . . . , xiR�1) :=
X

i,j: 06i<j6N

(xj � xi)
�s
, (3.7)

and

Fm(X
⇤) =

1

xiR � xiL

X

06i<j6N, i<iR, j>iL

(x⇤
min{j,iR}�x

⇤
max{i,iL})(x

⇤
j �x

⇤
i )

�s�1
, (3.8)

with x
⇤
i := xi for 0 6 i 6 iL or iR 6 i 6 N .

Notice that the RHS of (3.8) is exactly E(X⇤) if iL = 0, iR = N .

Proof. STEP 1: Show that the global maximum of Fm is achieved inside
RiR�iL�1

sort (xiL , xiR).
In fact, one can extend the definition of Fm to the closure of RiR�iL�1

sort (xiL , xiR)
by interpreting (xj � xi)�s�1 as infinity when xj = xi, and Fm remains continu-
ous. We show that the (global) maximum of Fm on the closure of RiR�iL�1

sort (xiL , xiR)
is not achieved at boundary. In fact, at any boundary point, one has either
xk1�1 < xk1 = xk1+1 = · · · = xk2 < xk2+1 for some iL < k1 < k2 < iR � 1, or
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change in P_k: - +++++

suppose P_k>F_m here
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Lemma 3.2. The global maximum of Fm on RiR�iL�1
sort (xiL , xiR) is achieved at
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iL+1, . . . , x

⇤
iR�1), which is the only point satisfying

PiL = · · · = PiR�1. (3.6)

Furthermore, X⇤ is the unique global minimizer of the energy functional

E(xiL+1, . . . , xiR�1) :=
X

i,j: 06i<j6N

(xj � xi)
�s
, (3.7)

and

Fm(X
⇤) =

1

xiR � xiL

X

06i<j6N, i<iR, j>iL

(x⇤
min{j,iR}�x

⇤
max{i,iL})(x

⇤
j �x

⇤
i )

�s�1
, (3.8)

with x
⇤
i := xi for 0 6 i 6 iL or iR 6 i 6 N .

Notice that the RHS of (3.8) is exactly E(X⇤) if iL = 0, iR = N .

Proof. STEP 1: Show that the global maximum of Fm is achieved inside
RiR�iL�1

sort (xiL , xiR).
In fact, one can extend the definition of Fm to the closure of RiR�iL�1

sort (xiL , xiR)
by interpreting (xj � xi)�s�1 as infinity when xj = xi, and Fm remains continu-
ous. We show that the (global) maximum of Fm on the closure of RiR�iL�1

sort (xiL , xiR)
is not achieved at boundary. In fact, at any boundary point, one has either
xk1�1 < xk1 = xk1+1 = · · · = xk2 < xk2+1 for some iL < k1 < k2 < iR � 1, or

is convex  

-> unique minimum at rE = 0



Part 2: analogue of maximum principle

• Closest pairwise distance: an analogue of the maximal density


• Lemma:  

• This almost says that the “maximal density” never increases
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and denote

˜̃xi =

⇢
x̃i, iL + 1 6 i 6 iR � 1,

xi, elsewhere.
(3.17)

Then by the minimality of E(X⇤),

E(X⇤) 6E(x̃iL+1, . . . , x̃iR�1)

=C0 +
X

06i<j6N, i<iR, j>iL

(˜̃xj � ˜̃xi)
�s

6C0 +
X

06i<j6N, i<iR, j>iL

(x̃j � x̃i)
�s

6C0 + (N + 1)
1X

i=1

⇣
(1 � 2✏1)

i

N

⌘�s

=C0 + (1 � 2✏1)
�s
⇣(s)(N + 1)N s

,

(3.18)

where the second inequality is because when changing from ˜̃x to x̃, we have

˜̃xj �
˜̃xi =

8
>>><

>>>:

x̃j � x̃i, iL + 1 6 i < j 6 iR � 1;

x̃j � xi > x̃j � ✏1 > x̃j � x̃i i 6 iL < j 6 iR � 1;

xj � x̃i > (1 � ✏1) � x̃i > x̃j � x̃i iL + 1 6 i < iR 6 j;

xj � xi > (1 � ✏1) � ✏1 > x̃j � x̃i i 6 iL < iR 6 j;

(3.19)

which includes all the cases appearing in the summation. Therefore we finish
the proof by

Fm(X) 6 (1 +
1

N
)(1 � 2✏1)

�s�1
⇣(s)N s+1

6 (1 +
1

N
)(1 + 2.5(s+ 1)✏1)⇣(s)N

s+1 6 (1 + ✏)⇣(s)N s+1
(3.20)

for ✏1 6 0.01
3(s+1) and N large enough, where the second inequality uses

(1 � 2✏1)
�s�1 6 (1 + 2.2✏1)

s+1 6 e
2.2✏1(s+1) 6 1 + 2.5(s+ 1)✏1. (3.21)

⇤
Remark 3.3. Under the same assumptions as in Lemma 3.1, one can show the
existence of an index iM such that PiM > (1 � ✏)⇣(s)N s+1. We omit the details
for this result because it will not be used in the proof of Theorem 2.1.

4. Approximation by flat torus

For given z1(t), . . . , zN(t) satisfying (1.6), define the closest pairwise distance
and the ‘maximal density’, respectively, by

�(t) := min
16i6N

(zi+1(t) � zi(t)), ⇢M(t) :=
1

N�(t)
(4.1)
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For those j with d(zi, zj) > r0, Lemma 4.1 gives |x(zi)�x(zj)| > r0/2. Therefore

s

X

j 6=i

W (x(zi) � x(zj))

6
X

iL6j6iR, j 6=i

|zi � zj|
�s(1 + O((zi � zj)

2)) + CNr
�s
0

6(1 + O(r20))
X

iL6j6iR, j 6=i

(|j � i|�)�s + CNr
�s
0

6(1 + O(r20))2⇣(s)�
�s + CNr

�s
0 .

(4.31)

Summing over i, this gives

E(Z) 6 (1 + O(r20))⇣̃(s)N
�s
�
�s + CN

1�s
r
�s
0

= (1 + O(r20))⇣̃(s)⇢
s
M + CN

1�s
r
�s
0 ,

(4.32)

where ⇢M is defined in (4.1). We first take r0 small enough so that r
2
0 6 c✏,

and then N large enough so that CN
1�s

r
�s
0 6 ✏, and the conclusion is obtained

(since ⇢M > 1).
Finally, inequalities (7.3) and (7.6) proved later in Section 7 imply that the

left-hand inequality in (4.27) holds for N for su�ciently large. ⇤

5. Control on the closest pair

In this section we analyze the evolution of the closest pairwise distance � as
defined in (4.1). We first give an unconditional lower bound of d

dt�.

Lemma 5.1. There holds

d

dt
� > �CN

�s
N⇤�

�s+2
, N⇤ :=

8
><

>:

1, s > 2;

logN, s = 2;

N
�s+2

, 1 < s < 2/

(5.1)

very small quantity



• Lemma: when N is large, if                 then


• If “maximal density” is not decreasing very fast, then Lemma says that the 
“total repulsion” at the maximal density point is as large as the continuum 
case.


• If “maximal density” is decreasing very fast, then it helps us: it cannot go 
back to large values.
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Next we state the following lemma: either �(t) is increasing very fast, or at
iM the total repulsion is as large as that of a uniform distribution of particles
with spacing �(t), which is approximately the RHS of (5.12).

Lemma 5.2. Fix ✏ > 0. For N > N0(✏), if

d

dt
� 6 1, (5.11)

then
iMX

i=iL

iRX

j=iM+1

|zi � zj|
�s�1 > ⇣(s)��s�1(1 � ✏), (5.12)

where iL, . . . , iM � 1 are the indices of particles zi 2 (ziM � r0, ziM ), and iM +
2, . . . , iR are the indices of particles zi 2 (ziM+1, ziM+1 + r0).

Proof. We will use the same notations as the previous proof. We claim that for
any fixed J , there exists N0(✏, J) such that, N > N0 and |iM +2� j| 6 J imply

z̃j � zj 6 ✏�, 8j = iL, . . . , iM � 1 with |iM + 2 � j| 6 J (5.13)

under the condition (5.11), see Figure 2 right for an illustration.
Suppose on the contrary that z̃j �zj > ✏� for some j in the range as in (5.13).

Then by (5.5) and (5.6), for any z 2 [z̃j�1, z̃j],

�
0(z) =

Z ziM+1

ziM

@y (y, z) dy

=

Z ziM+1

ziM

|y � z|
�s�3

⇣
(s+ 1)(s+ 2) � (ziM )(s � 1)s|y � z|

2
⌘
dy

> c

Z ziM+1

ziM

|y � z̃j|
�s�3 dy > c�|ziM+1 � z|

�s�3

> c�
�s�2

|iM + 2 � j|
�s�3

,

(5.14)

where in the first inequality the second term in the integrand is absorbed by
the first term using the smallness of |y � z| 6 r0. Therefore

Z z̃j

zj

�
0(z) dz >

Z z̃j

max{zj ,z̃j�1}
�
0(z) dz > min{�, z̃j � zj}�

0(z̃j�1)

>min{�, z̃j � zj}�
�s�2

|iM + 2 � j|
�s�3

.

(5.15)

Therefore, if z̃j � zj > ✏�, then
Z z̃j

zj

�
0(z) dz > c✏�

�s�1
|iM + 2 � j|

�s�3 (5.16)
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r0

r0

Figure 1. The number r0 in Lemma 4.1 is the range for which
x(z) can be approximated by a local Taylor expansion near x(y)
for any fixed y.

with zN+1 understood as z1. Furthermore, at a fixed time t, we set

iM := argmini(zi+1 � zi) (4.2)

as the index of the closest pair of particles. Finally, we define

d(y, z) := min
k2Z

|y � z + k| (4.3)

as the distance between y and z on the flat torus. It is clear that d(y, z) = |y�z|

if |y � z| 6 1
2 .

Lemma 4.1. There exists r0 > 0 such that

|x(y) � x(z)| > min{
1

2
d(y, z), r0}, 8y, z. (4.4)

See Figure 1 for an illustration of (4.4).

Proof. First, by the Taylor expansion

x(y) � x(z) = (y � z)x0(y) + O((y � z)2) (4.5)

we see that
1

2
|y � z| 6 |x(y) � x(z)| 6 3

2
|y � z| (4.6)

if |y � z| 6 r1 is small enough.
Consider the continuous function

F (y, z) = |x(y) � x(z)| (4.7)

defined on {(y, z) 2 T2 : d(y, z) > r1} which is compact. Since x(z) is non-
self-intersecting, F is everywhere positive, and achieves its positive minimum
on this set, calling it r0.



Proof of the lemmas
• The best possible way of keeping      not increasing is to pack particles near        

as dense as possible


• In this case, one recovers the continuum case, and one can compute the 
“total repulsion” like a uniform distribution


• Otherwise, if there is a defect, then delta has to decrease very fast
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ziM

ziM+1

zj

� ziM

ziM+1

· · ·

· · ·

a possible defect?

�

Figure 2. Lemmas 5.1 and 5.2. Left: the summand in the last
term of (5.2). The two terms representing the forces from zj

acting on ziM (red) and ziM+1 (blue), which decreases/increases �
respectively. Right: a local uniform distribution like {z̃j} makes
d
dt� ⇡ 0 up to errors from curvature. A possible defect will release
the total pushing force on �, make d

dt� positive, and thus violate
(5.11).

Proof. We first compute the time derivative of �:

N
s d

dt
(ziM+1 � ziM )

= �

X

j 6=iM+1

rW (x(ziM+1) � x(zj)) · x0(ziM+1)

+
X

j 6=iM

rW (x(ziM ) � x(zj)) · x0(ziM )

= rW (x(ziM ) � x(ziM+1)) · x0(ziM )

+ rW (x(ziM ) � x(ziM+1)) · x0(ziM+1)

+
X

j 6=iM ,iM+1

⇣
rW (x(ziM ) � x(zj)) · x0(ziM )

� rW (x(ziM+1) � x(zj)) · x0(ziM+1)
⌘
.

(5.2)

See Figure 2 left as an illustration.
Now we estimate the summand in the last term of (5.2) for each j, see Figure

2 top for an illustration. First notice that if d(z, ziM ) > r0 and d(z, ziM+1) > r0,
then Lemma 4.1 implies that |x(z)�x(u)| is uniformly bounded below by some

� iM



Handling the “curvature effect”
• Lemma: For y, z being close enough, 

• Proof by Taylor expansions…
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To show (4.4), if d(y, z) > r1, then the definition of r0 gives

|x(y) � x(z)| > r0. (4.8)

If d(y, z) = |y � z| < r1, then (4.6) gives

|x(y) � x(z)| > 1

2
|y � z| =

1

2
d(y, z). (4.9)

⇤

Lemma 4.2. There exist CR > 0 and r0 > 0, depending on the curve x(z) and
s, such that for any y 6= z 2 T with d(y, z) 6 r0, we have

|rW (x(y)�x(z)) ·x0(y)�W
0(y�z)(1+(y)|y�z|

2)| 6 CR|y�z|
�s+2

, (4.10)

where

(z) :=
s � 2

24
|x00(z)|2. (4.11)

Furthermore,

sgn(rW (x(y) � x(z)) · x0(y)) = sgn(W 0(y � z)). (4.12)

If y, z and ỹ additionally satisfy ỹ � 1 < z < y < ỹ, then
���
⇣
rW (x(y) � x(z)) · x0(y) � W

0(y � z)(1 + (y)|y � z|
2)
⌘

�

⇣
rW (x(ỹ) � x(z)) · x0(ỹ) � W

0(ỹ � z)(1 + (y)|ỹ � z|
2)
⌘���

6CR min{d(y, z), d(ỹ, z)}�s+1
· |y � ỹ|

(4.13)

and the same inequality holds if (y) is replaced by (ỹ).
Moreover, for any r1 > 0, there exists C0(r1) > 0 such that

|rW (x(y) � x(z))| 6 C0(r1), 8d(y, z) > r1. (4.14)

Proof. We assume hereafter that r0 is su�ciently small so that Lemma 4.1
applies.
STEP 1: We first prove (4.10) and (4.12) with the assumption d(y, z) =

|y � z| 6 r0.
By Taylor expansion for |y � z| small,

x(y)�x(z) = (y�z)x0(y)�
(y � z)2

2
x00(y)+

(y � z)3

6
x000(y)+O((y�z)4) (4.15)

where the error term involves kx(4)
kL1 . Since the curve length parametrization

satisfies |x0(z)| = 1, one obtains

x00(z) · x0(z) = 0, x000(z) · x0(z) + |x00(z)|2 = 0 (4.16)

forcing from z to y as the real line with curvature effect
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2)
⌘���

6CR min{d(y, z), d(ỹ, z)}�s+1
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2)
⌘���

6CR min{d(y, z), d(ỹ, z)}�s+1
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Proof of main result
• When the “maximal density” is not decreasing 

too fast, we have


• This provides energy dissipation


• Use Lemma:                                           to 
close the estimate


• Construct Lyapunov functional for exceptional 
cases (maximal density decrease fast)
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Figure 3. Proof of Theorem 2.1. Left: when (5.11) does not
hold, � is increasing very fast (i.e., ⇢M is decreasing very fast).
Right: when (5.11) holds, there is almost uniform distribution
near ziM (red parts) with average density near ⇢M , and the total
repulsion at ziM is strong (see (5.12)). The rest part has average
density at most 1 + ✏, and Lemma 3.1 applies to give a weak
total repulsion cut. The strong/weak total repulsion ((1)-(2) good
contribution, I1, and (3)-(4) bad contribution, I2, see (6.9)) forces
the green part to rotate. The parameter r1 is to guarantee that (3)
or (4) cannot be too short, so that the possible bad contribution
from (1)-(4) or (2)-(3) (the term I3) can be neglected.

6. Proof of Theorem 2.1

Proof of Theorem 2.1. STEP 1: We aim to give a positive lower bound
X

iM+16i6iS

żi > �(⇢M)N (6.1)

(where ⇢M is defined in (4.1)) under the assumption (5.11), where

�(⇢M) =

(
c(⇢M � 1 � ✏), ⇢M 6 2

c⇢
s+1
M

(6.2)

for some indices iM and iS. Notice that the assumption (5.11) is equivalent to

d

dt
⇢M > �N

�1
�
�2 = �N⇢

2
M (6.3)

since ⇢M = 1
N� , see Figure 3 for an illustration.
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Therefore, we get
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1
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4
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if N is large. Also, if ⇢M > 2, then
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4
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M

and we get X

iM+16i6iS

żi > c⇢
s+1
M N (6.13)

if N is large.
STEP 2: We use (6.1) (under the condition (6.3)) to give energy dissipation

rate, and use it to define a Lyapunov-like functional.
If ⇢M � 1 � ✏ > 0, then Cauchy-Schwarz gives

c
2(⇢M � 1 � ✏)2N2 6

⇣ X

iM+16i6iS

żi

⌘2

6 (iS � iM)
X

iM+16i6iS

|żi|
2 6 N

X

i

|żi|
2
.

Recalling the energy dissipation law (1.5), we get

d

dt
E(t) 6 �c

2((⇢M � 1 � ✏)>0)
2
, if

d

dt
⇢M > �N⇢

2
M (6.14)

and similarly

d

dt
E(t) 6 �c

2
⇢
2(s+1)
M , if

d

dt
⇢M > �N⇢

2
M , ⇢M > 2. (6.15)

Since ⇢M = 1
N� , Lemma 5.1 gives

d

dt
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1

N�2
·
d
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�
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· N
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M . (6.16)

Define a Lyapunov-like functional

F (t) = E(t) + ⇢M(t)s. (6.17)

Then at any time t with ⇢M(t) > 1 + 2✏, at least one of the following three
options must hold:

• When d
dt⇢M < �N⇢

2
M , using d

dtE 6 0,

d

dt
F 6 �sN⇢

s+1
M . (6.18)

• When d
dt⇢M > �N⇢

2
M and ⇢M > 2, (6.15) and (6.16) give

d

dt
F 6 �c⇢

2s+2
M +

CN⇤

N
⇢
2s�1
M 6 �c⇢

2s+2
M (6.19)
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(4.16), (4.18) and (4.19) with y replaced by ⇠ (which is allowed since |z�⇠| 6 2r0,
by replacing r0 with a smaller one if necessary), give

�
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⇣
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24
+

s+ 2

12
�

s+ 2

3
+
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⌘
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i
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h
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⇣
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⌘
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i
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·

h
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i
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where O refers to O((⇠ � z)3), and in the last equality we used |(y)� (⇠))| 6
k

0
kL1 · |y � ⇠| 6 k

0
kL1 · |y � ỹ|. This gives (4.13).

When replacing (y) by (ỹ), the total change on the LHS of (4.13) is no
more than O(|y� z|

�s�1
· |y� z|

2
· |y� ỹ|) since |(y)� (ỹ)| 6 k

0
kL1 · |y� ỹ|,

thus controled by the RHS. ⇤
Lemma 4.3. For any ✏ > 0, there exists (large) N0, depending on ✏, s and the
curve x(z), such that the following holds for N > N0 and any positions of the
particles Z = {z1, . . . , zN}:

⇣̃(s)(1 � ✏) 6 E(Z) 6 ⇣̃(s)(1 + ✏)⇢sM (4.27)

Proof. We first prove the right-hand inequality of (4.27). We rewrite (1.4)

2E(Z) = N
�s�1

X

i

X

j 6=i

W (x(zi) � x(zj)). (4.28)

For each fixed i, let iL, . . . , iR be the indices j with |zi � zj| 6 r0, where r0 > 0
is a small constant to be chosen such that Lemma 4.1 applies. From Lemma 4.2
we can write

|x(zi) � x(zj)|
�s = |zi � zj|

�s(1 + O((zi � zj)
2)), (4.29)

for j = iL, . . . , iR with j 6= i. Since zj+1 � zj > � for all j, we have

|zi � zj| > |j � i|�. (4.30)

X

iM+1iiS

żi � c(⇢M � 1� ✏)�0 ·N
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Our second main result shows that upper bounds on the energy of N -point
configurations such as provided by Theorem 2.1 impose geometrical constraints
on the distribution of these configurations showing that they are near optimal
configurations.

Theorem 2.2. For given ✏ > 0 and s > 1, there is some N0 depending on s

and ✏ such that if N > N0 and Z = {zi}
N
i=1 satisfies

E(Z) 6 ⇣̃(s)(1 + ✏), (2.3)

then the mean absolute deviation of di = zi+1 � zi, i = 1, 2, . . . , N , satisfies

1

N

NX

i=1

����di �
1

N

���� 6 2

 
2⇣̃(s)

s+ 1

!1/2
✏
1/2

N
, (2.4)

and for all a 2 R and 0 < L < 1, we have
����
#{i : [zi, zi+1) ⇢ [a, a+ L)}

N
� L

���� 6
h
L(1 � L)⇣̃(s)

i1/2
(2✏)1/2. (2.5)

Consequently, under the assumptions of Theorem 2.1, the conclusions (2.4) and
(2.5) hold for N su�ciently large and t > C/✏.

The proof of Theorem 2.1 is given in Sections 3-6. Below we discuss the
motivation for the argument used in its proof. The proof of Theorem 2.2 is
given in Section 7.

2.2. Outline of the proof of Theorem 2.1. It is known that the global
minimizer of E defined in (1.4) converges to the uniform distribution as N !

1; therefore it is natural to expect that, for large N , the gradient flow (1.1)
converges to some limiting configuration which is nearly equally distributed.
However, we encounter the following di�culties:

• When the curve x(z) is not convex, the energy E is not necessarily a
convex function of {zi}.

• The global minimizer of E may not be unique, and there may be local
minimizers and saddle points.

To handle these di�culties, we manage to extract some ideas from the mean
field limit of (1.1). In fact, it is proved in [9] that the analog of (1.1) on the
real line has the porous medium equation

@t⇢ = ⇣(s)@zz(⇢
s+1) (2.6)

as its mean field limit, under certain assumptions on the initial data. This mean
field limit can be understood intuitively as follows:

• Due to the fast decay of W (x) for large |x|, the particle interaction is
localized when N is large, meaning that typically the interaction between
particles with large distances can be neglected, at least for a fixed time
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which implies

F̃ (t) 6 1

c(t � T1) +
1

F̃ (T1)

6 1

c(t � T1) + A�s
. (6.27)

Therefore if t � T1 > C
✏ with T1 6 t 6 T2, then F̃ (t) 6 ✏, which implies

F (t) 6 ((1 + ✏)⇣̃(s) + 1)(1 + 2✏)s + ✏. (6.28)

On the other hand ⇢M(t) 6 1 + B✏. This together with Lemma 4.3 implies

F (t) > (1 � ✏)⇣̃(s) + (1 +B✏)s (6.29)

which is a contradiction against (6.28) if B is large enough (only depending on
s). Therefore we get

T2 6
C

✏
(6.30)

and then Lemma 4.3 gives

E(T2) 6 (1 + ✏)⇣̃(s)⇢M(T2)
s 6 (1 + ✏)⇣̃(s)(1 +B✏)s 6 (1 + C✏)⇣̃(s). (6.31)

E(t) also satisfies the last inequality if t > T2, since E(t) is non-increasing.
⇤

7. Energy and distribution

Recall that the energy of a configuration paramatrized by Z is

E = E(Z) :=
1

sN s+1

NX

16i<j6N

|x(zj) � x(zi)|
�s
,

and observe that

E(Z) =
1

2sN s+1

NX

i=1

i+N�1X

j=i+1

|x(zj) � x(zi)|
�s =

1

2sN s+1

NX

i=1

N�1X

k=1

|x(zi+k) � x(zi)|
�s

=
1

2

N�1X

k=1

E
k(Z),

where

E
k(Z) :=

1

sN s+1

NX

i=1

|x(zi+k) � x(zi)|
�s
.

One may easily verify that Ek(Z) = E
N�k(Z) for 1 6 k < N and thus

E(Z) =

(PN�1
2

k=1 E
k(Z), for N odd,

PN
2 �1
k=1 E

k(Z) + (1/2)EN/2(Z), for N even.
(7.1)
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For 1 6 k 6 N � 1, we define

Ẽ
k(Z) :=

1

sN s+1

NX

i=1

(zi+k � zi)
�s
,

and

Ẽ(Z) =

(PN�1
2

k=1 Ẽ
k(Z), for N odd,

PN
2 �1
k=1 Ẽ

k(Z) + (1/2)ẼN/2(Z), for N even.
(7.2)

Since x(z) is an arc-length parametrization, we have |x(z)� x(z0)| 6 |z � z
0
|

for all z, z0 2 R and thus

Ẽ(Z) 6 E(Z), (7.3)

for any Z. Let

⇣(s;N) :=

bN�1
2 cX

k=1

k
�s
. (7.4)

Lemma 7.1. For k,N 2 N and s > 0,

s
�1
k
�s 6 Ẽ

k(Z) 6 k
�s
Ẽ

1(Z), (7.5)

and

s
�1
⇣(s;N) 6 Ẽ

1(Z) + s
�1(⇣(s;N) � 1) 6 Ẽ(Z). (7.6)

Proof. By Jensen’s inequality,

sN
s+1

Ẽ
1(Z) =

NX

i=1

(zi+1 � zi)
�s =

1

k

k�1X

j=0

NX

i=1

(zi+j+1 � zi+j)
�s

=
NX

i=1

1

k

k�1X

j=0

(zi+j+1 � zi+j)
�s > sN

s+1
k
s
Ẽ

k(Z),

and

Ẽ
k(Z) = s

�1
N

�s
NX

i=1

(zi+k � zi)
�s 1

N
> s

�1

 
NX

i=1

(zi+k � zi)

!�s

= s
�1
k
�s
,

proving (7.5). From (7.2), it follows that Ẽ(Z) >PbN�1
2 c

k=1 Ẽ
k(Z) which together

with (7.5) establishes (7.6). ⇤
In the next lemma we show that the mean absolute deviation of the neighbor

arclength distances di := zi+1 � zi is small on the microscopic scale. As a
consequence we derive a macroscopic result showing that the density of points
is nearly uniform when N is su�ciently large and the energy is su�ciently close
to its minimal value.
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Ẽ(Z) 6 E(Z), (7.3)

for any Z. Let

⇣(s;N) :=

bN�1
2 cX

k=1

k
�s
. (7.4)

Lemma 7.1. For k,N 2 N and s > 0,

s
�1
k
�s 6 Ẽ
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Ẽ
1(Z) =

NX

i=1

(zi+1 � zi)
�s =

1

k

k�1X

j=0

NX

i=1

(zi+j+1 � zi+j)
�s

=
NX

i=1

1

k

k�1X

j=0

(zi+j+1 � zi+j)
�s > sN

s+1
k
s
Ẽ
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In the next lemma we show that the mean absolute deviation of the neighbor

arclength distances di := zi+1 � zi is small on the microscopic scale. As a
consequence we derive a macroscopic result showing that the density of points
is nearly uniform when N is su�ciently large and the energy is su�ciently close
to its minimal value.
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Ẽ

k(Z),

and

Ẽ
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Lemma 7.2. Let ✏ > 0, s > 1, N > 2, and define
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If Z = (z1, z2, . . . , zN) satisfies
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Notice that for every i with di < 1/N , we have ⇠i 2 (di,
1
N ), and thus

W
00(⇠i) = (s+ 1)⇠�s�2

i > (s+ 1)N s+2
. (7.15)
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Future work

• Exponential convergence rate?


• Uniform-in-time mean field limit?


• Convergence to local equilibrium (local uniform distribution) in very short 
time?


• Extension to multi-dimensions?


