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PART I

Introduction
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Fourier uncertainty

Let f ∈ L1(Rd ). We define

Fd [f ](ξ) = f̂ (ξ) =

∫
Rd

e−2πix ·ξ f (x) dx (ξ ∈ Rd ).

Fourier uncertainty: "one cannot have an unrestricted control of a
function and its Fourier transform simultaneously."
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Fourier uncertainty
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Some examples

Paley-Wiener Theorem:

f , f̂ cannot both have compact support

Heisenberg: the mass of f and f̂ cannot be arbitrarily concentrated
near the origin

||f ||22 ≤
4π
d
|||x |f ||2 · |||y |̂f ||2
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Sign uncertainty principle

Past examples: control the concentration of mass of f and f̂

Question: Can we simultaneously control the signs
of f and f̂?
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The Recipe for Applications

For applications to Sphere Packings, Riemann Zeta Function,
prime gaps, algebraic number fields...
STEP 1: Obtain a formula relating the mathematical object, to an
arbitrary function and its Fourier transform

STEP 2: Find a way to simultaneously control f and f̂ , to recover
the optimal information in the previous formula for the problem in
question

I Uncertainty: What is the limit?

STEP 3: Construct functions with those constraints that do the
best possible job
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Sphere Packings: Cohn-Elkies bounds
Theorem (Cohn, Elkies)

Let f be even, real-valued, and integrable on Rd , such that f̂ is also
integrable. Suppose that f (0) = f̂ (0) = 1, f̂ ≥ 0 everywhere, and
f (x) ≥ 0 for |x | ≥ r . Then, the optimal density of sphere packings ∆d
satisfies

∆d ≤ Vol(B r
2
),

where B r
2

is the ball of radius r
2 in Rd .

STEP 1: Poisson summation formula for lattices:∑
v∈Λ

f (v) =
1
|Λ|

∑
v∈Λ∗

f̂ (v).

STEP 2: Imposing the sign conditions on f and f̂ , we recover
desired info on minimal norm of lattice
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Sphere Packings: Cohn-Elkies bounds

Theorem (Cohn, Elkies)

Let f be even, real-valued, and integrable on Rd , such that f̂ is also
integrable. Suppose that f (0) = f̂ (0) = 1, f̂ ≥ 0 everywhere, and
f (x) ≥ 0 for |x | ≥ r . Then, the optimal density of sphere packings ∆d
satisfies

∆d ≤ Vol(B r
2
),

where B r
2

is the ball of radius r
2 in Rd .

STEP 3, numerical approach (Cohn-Elkies): f (x) = P(x)e−π|x |
2

STEP 3, sharp approach (Viazovska and Cohn, Kumar, Miller,
Radchenko and Viazovska): Laplace transform of modular forms,
satisfy hints of steps 1 and 2
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Other examples of recipe

Analytic number theory:
STEP 1: Guinand-Weil Explicit Formula connects arbitrary f , f̂ ,
zeroes of ζ(s), and prime numbers.

STEP 2: Controlling the support of f̂ , or imposing inequalities for f ,
are classical conditions.

Algebraic number theory:
STEP 1: Tate’s zeta function is related to the Dedekind zeta
function of a number field, an arbitrary f , and f̂
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Sign uncertainty principle
Bourgain, Clozel and Kahane, 2010

A continuous f : Rd → R is eventually non-negative if f (x) ≥ 0 for
sufficiently large |x |, and we define

r(f ) := inf{r > 0 : f (x) ≥ 0 for all |x | ≥ r}.

-� -� � �

-�

�

�

f (x) = (x10 − 8x8 + 15x6 − x4 − 2x2 − 1)e−x2
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Sign uncertainty principle
Bourgain, Clozel and Kahane, 2010

If f and f̂ are negative at 0, can they both become positive
arbitrarily fast? Formally:
Consider the family:

A+1(d) =


f ∈ L1(Rd ) \ {0} continuous, even, real-valued; f̂ ∈ L1(Rd );

f (0) =
∫
Rd f̂ ≤ 0 ; f̂ (0) =

∫
Rd f ≤ 0;

f and f̂ are eventually non-negative.

 .

Define
A+1(d) := inf

f∈A+1(d)

√
r(f ) r

(̂
f
)
.

(note that this is invariant under dilations fδ(x) := f (δx)).
They show: √

d + 2
2π

≥ A+1(d) ≥
√

d
2πe

.
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Pictures

Take for example f (x) = e−πx2/2 + e−2πx2 −
(√

2 + 1√
2

)
e−πx2

.
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Reminder: Eigenvalues of the Fourier transform

Fd : L2(Rd )→ L2(Rd ) is a linear, unitary operator

Eigenvalues: f̂ = λf
Since F4

d is the identity, then λ ∈ {1,−1, i ,−i}
Eigenvectors span L2(Rd )
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Reducing to eigenfunctions
Problem is associated to eigenvalue +1
Consider the (sub)-family:

A∗+1(d) =


f ∈ L1(Rd ) \ {0} continuous, even, real-valued ; f̂ = f ;

f (0) =
∫
Rd f ≤ 0;

f is eventually non-negative.

 .

Then
A+1(d) = A∗+1(d) := inf

f∈A∗+1(d)
r(f ).

Gonçalves, Oliveira e Silva, Steinerberger 2017:
Improved estimates
Proved existence of radial extremizers
Qualitative properties of extremizers
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A dual sign uncertainty principle
Cohn and Gonçalves, 2019

Let s = {+1,−1}. Consider the family:

As(d) =


f ∈ L1(Rd ) \ {0} continuous, even, real-valued ; f̂ ∈ L1(Rd );

s f (0) =
∫
Rd sf̂ ≤ 0 ; f̂ (0) =

∫
Rd f ≤ 0;

f and sf̂ are eventually non-negative.

 .

and define
As(d) := inf

f∈As(d)

√
r(f ) r

(
sf̂
)
.

Reduction to eigenfunctions: may assume that f̂ = sf above.

ALP(d) ≥ A−1(d)

(Conjecture: equality!)
They show:

C
√

d ≥ As(d) ≥ c
√

d .
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Sharp constants
Theorem

(i) (Corollaries of Cohn and Elkies ’03 (d = 1), Viazovska ’17 (d = 8)
and Cohn, Kumar, Miller, Radchenko and Viazovska ’17 (d = 24))

A−1(1) = 1 ; A−1(8) =
√

2 ; A−1(24) = 2.

(ii) (Cohn and Gonçalves ’19)

A+1(12) =
√

2.

Note that A+1(12) = A−1(8). Conjecture (Cohn, Gonçalves):

A+1(d + 4) ≈ A−1(d).

Gonçalves, Oliveira e Silva and Ramos (preprint, 2020);
extensions of the (±1)- sign uncertainty to a general operator
setting.
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Classical weighted uncertainty principles

The mass of f and f̂ cannot be concentrated near the zero set of a
function Q:

||f ||22 ≤ ||Qf ||2 · ||Qf̂ ||2

Shubin, Vakilian, Wolff: Q non-degenerate quadratic form in Rd

Demange: Q(x1, ..., xd ) = |x1|α1 |x2|α2 ...|xn|αn , αj > 0
Singular weights and Pitt’s inequality: for 0 ≤ α < n,∫

Rd
|x |−α|f (x)|2dx <<

∫
Rd
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PART II

Weighted sign Fourier uncertainty: the classical path
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A "Certainty" principle: controlling the signs of f and f̂
New control: can f and f̂ be positive in a given geometrical region,
negative in its complement? If yes, how quickly?
Equivalently, suppose f , f̂ have same sign as given, arbitrary
function P.
Consider P(x , y) = x2 − Ay2 in dimension 2, where A > 0. Can f ,
f̂ simultaneously have this sign?

Partial answer: If A = 1 YES!
Open question: What happens if A 6= 1?
Let P be an homogeneous polynomial.
Question: Can f and f̂ simultaneously vanish on {P = 0}?
Partial answer: If P is harmonic, yes!
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The New Step 2

QUESTION: Can we control the signs of f and f̂ , simultaneously,
in an arbitrary way?
Partial answer: When the signs are given by a Harmonic
polynomial, Possible!
P(x , y , z) = (x2 + y2 − 2z2)

More flexibility, but What is Step 0???
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A new point of view

U.P. for eigenvalues ±1. What about the other eigenvalues ±i?

Goal: Investigate the situation where the signs of f and f̂ resonate
with a given generic function P at infinity, given a suitable
competing weighted integral condition.

All that happened before will be the case P ≡ 1.

A measurable g : Rd → R is eventually non-negative if g(x) ≥ 0
for sufficiently large |x |, and we define

r(g) := inf{r > 0 : g(x) ≥ 0 for all |x | ≥ r}.
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The function P

Let P : Rd → R be measurable function such that:

(P1) P ∈ L1
loc(Rd ).

(P2) P is either even or odd. We let r ∈ {0,1} be such that

P(−x) = (−1)rP(x).
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The generalized setup

Let s ∈ {+1,−1}. Consider the family:

As(P; d)=



f ∈ L1(Rd )\{0} continuous, real-valued; f (−x)=(−1)rf (x);

f̂ ,Pf ,Pf̂ ∈ L1(Rd );∫
Rd Pf ≤ 0 ,

∫
Rd s(−i)rPf̂ ≤ 0;

Pf , s(−i)rPf̂ are eventually non-negative.


.

Define
As(P; d) = inf

f∈As(P;d)

√
r(Pf ) r

(
s(−i)rPf̂

)
.

Assuming technical but very general conditions, we may reduce to
eigenfunctions, for all possible eigenvalues!! (P3)
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Generalized eigenfunction problem

A∗s(P; d) =



f ∈ L1(Rd ) \ {0} continuous, real-valued; f̂ = s irf ;

Pf ∈ L1(Rd );∫
Rd Pf ≤ 0 ;

Pf is eventually non-negative.


.

Define
A∗s(P; d) = inf

f∈A∗s (P;d)
r(Pf ).
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Examples

A∗s(P; d) =



f ∈ L1(Rd ) \ {0} continuous, real-valued; f̂ = s irf ;

Pf ∈ L1(Rd );∫
Rd Pf ≤ 0 ;

Pf is eventually non-negative.


.

Define
A∗s(P; d) = inf

f∈A∗s (P;d)
r(Pf ).

P(x1, x2, . . . , xd ) = x1.

We will show, for instance, that A∗+1(P; 22) = 2.

P(x1, x2, x3, x4)=
(
x3

1 +x2
1 (x2−x3)−x1(x2

2 +2x2
3 )−x3

2 +x2
2 x3+2x2x2

3
)
x4

We will show, for instance, that A∗+1(P; 4) =
√

2.
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The classical path

Non-empty classes

Admissible P

Generic sufficient conditions Other examples

Sign Uncertainty

Generic sufficient conditions Other examples
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Non-empty classes
Theorem (Non-empty classes)

Let P be such that P e−λπ|·|
2 ∈ L1(Rd ) for all λ > 0. Assume that

P = H ·Q, where H : Rd → R is a homogeneous and harmonic
polynomial of degree ` ≥ 0, and Q : Rd → R is eventually
non-negative. Then A∗s(P; d) is non-empty.

Theorem (Upper bounds)
Under the previous conditions, if P is also homogeneous of degree
γ > −d, we have the upper bounds

A∗s(P; d) ≤
√

max{d + `+ γ , `− γ}
2π

+ O(1),

where the implied constant is universal. In fact, when s i`+r = −1 and
−d < γ ≤ −d

2 we have
A∗s(P; d) = 0.
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Bochner’s relation: the power of harmonic polynomials
A link between dimensions: controlling the form of f and f̂

f and f̂ have the form f = H(x)g(|x |)

Lemma (Bochner’s relation)

Let H : Rd → R be a homogeneous, harmonic polynomial of degree `,
and h : [0,∞)→ R be a function such that∫ ∞

0
|h(r)|2 rd+2`−1dr <∞.

Let hd : Rd → R be the radial function on Rd induced by h, that is
hd (x) := h(|x |). Then

Fd [H · hd ](ξ) = (−i)`H(ξ) · Fd+2`[hd+2`](ξ,0),

where ξ ∈ Rd and (ξ,0) ∈ Rd × R2`.
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Proof: Non-empty classes and upper bounds.
Consider functions of the form:

f (x) = H(x)g(|x |)

where g is an appropriate linear combination of dilations of gaussians.
By choosing dilations of a single function, we take advantage of
homogeneity
Bochner’s relation controls the resonance with P = HQ, for both f
and f̂
Asymptotic analysis: optimize over several parameters to obtain
upper bounds
Note: different qualitative behaviour for s = ±1 when γ ≤ −d

2
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More questions...

When P = HQ, we can take f = H(x)g(|x |). Are there others?
Open question: prove or disprove. Consider P(x , y) = x in R2.

Let f be odd and nice (Schwartz), such that whenever x2 + y2 ≥ 1
and x ≥ 0,

f (x , y) ≥ 0 and i f̂ (x , y) ≥ 0

Then, necessarily, f (0, y) = 0 for all y ∈ R?
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Admissible functions
Definition (Admissible functions)
P is admissible if there there exists 1 ≤ q ≤ ∞ and a positive constant
C = C(P; d ; q) such that:

(i) For all f ∈ L1(Rd ), with f̂ = ±i rf and Pf ∈ L1(Rd ), we have

||f ||q ≤ C ‖Pf‖1. (1)

(ii) If q > 1 then P ∈ Lq′
loc(Rd ). If q = 1 we have limr→0+ ‖P‖L∞(Br ) = 0.

Theorem (Sufficient conditions for admissibility)

Let P be such that the sub-level set Aλ = {x ∈ Rd : |P(x)| ≤ λ} has
finite Lebesgue measure for some λ > 0. Then inequality (1) holds
with q = 1. In particular, P is admissible with respect to q =∞. If P is
also homogeneous of degree γ > 0, we can take

C =
(
1 + γ

d

) [(
1 + d

γ

)
|A1|

] γ
d
.
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Ideas in proof:
Write f = fχA + fχAc

If A is a set with finite measure, and supp(f ) ⊂ A,∫
A

∣∣̂f (x)
∣∣2 dx ≤ |A|2

∫
A
|f (x)|2 dx .

From here, applying Cauchy-Schwartz and Haussdorf-Young
several times, use homogeneity and solve a restricted optimization
problem over all dilations to arrive at the explicit constant
In the non-homogeneous case, this inequality is replaced by the
more general (but less explicit) Amrein-Berthier inequality: when
E , F have finite measure,∫

Rd
|g(x)|2 dx ≤ C

(∫
Ec
|g(x)|2 dx +

∫
F c
|ĝ(x)|2 dx

)
.
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Other admissible functions and classical uncertainty
principles

Interpolation and Hausdorff-Young:

‖f‖22 ≤ ‖f‖1 ‖f̂‖1

L1 version of Heisenberg:

‖f‖22 ≤ 4π ‖x1f‖1 ‖x1 f̂‖1

{|x1| ≤ λ} has infinite measure! Still admissible
Note that here, we need to take q = 2 in the left-hand side
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Sign uncertainty

Theorem
Assume that the class A∗s(P; d) is non-empty and that P is admissible
with respect to an exponent 1 ≤ q ≤ ∞. Then there exists a positive
constant C∗ = C∗(P; d ; q) such that

A∗s(P; d) ≥ C∗.

Homogeneous case: Explicit C∗, in terms of the constant of
previous theorem
Also: general conditions that show the existence of extremizers
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Examples
P(x , y , z) = (x2 + y2 − 2z2)(x2 + y2 + 2z2)

We get sign uncertainty for (non-empty) family of functions
eventually positive inside the cone, eventually negative outside!
Let P(x) = |x |γ , with γ ≥ 0.
Combining the three theorems in homogeneous case, we get

C
√

d + γ ≥ As(|x |γ ,d) ≥ c
√

d

Open question: Can we get lower bound c
√

d + γ?
Logarithmic weight: P(x) = |x |γ log |x |.
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Examples: P = |x |γ

Singular case: what happens when γ < 0?

Not admissible! Mass of eigenfunctions can concentrate at∞
Try to fix this: can something like this hold for −d < α < γ and
eigenfunctions f? ∥∥f |x |α

∥∥
1 ≤ C

∥∥f |x |γ
∥∥

1

Says that the mass of f cannot concentrate near the origin. Similar
to weighted norm inequalities previously considered. Promising...

But it is FALSE!

There are counterexamples (communicated by Fedor Nazarov)
Hard to establish uncertainty for γ < 0 with classical methods
Dimension shifts: we can solve it for all negative γ > −d outside
small neighborhood of −d

2 !
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PART III

Dimension shifts
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Dimension shifts
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Theorem (Dimension shifts)

Let ` ≥ 0 and r(`) ∈ {0,1} be such that r(`) ≡ ` (mod 2). Let
P : Rd+2` → R be a radial function verifying (P3). Write P(x) = P0(|x |).
Let P̃ : Rd → R be of the form

P̃(x) = H(x) P0(|x |) Q(x),

where H : Rd → R is a non-zero homogeneous and harmonic
polynomial of degree ` and Q : Rd → R is an even non-negative
function, homogeneous of degree 0. If A∗s(P; d + 2`) is non-empty,
then A∗s(−1)(r(`)+`)/2

(
P̃; d

)
is also non-empty and

A∗s(P; d + 2`) ≥ A∗s(−1)(r(`)+`)/2

(
P̃; d

)
.

If P has a bounded sub-level set, Q ≡ 1 and H ∈ O(d)(x1x2 . . . x`)
(0 ≤ ` ≤ d), the equality holds.

Useful: Q = |x |` sgn(H)/H, when P(x) = |x |γ , γ < 0.
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Corollary (Sharp constants)

Let r(`) ∈ {0,1} be such that r(`) ≡ ` (mod 2). Then

A(−1)(r(`)+`+2)/2(R(x1 . . . x`) ; 8− 2`) =
√

2, 0 ≤ ` ≤ 2; R ∈ O(8− 2`);

A(−1)(r(`)+`)/2(R(x1 . . . x`) ; 12− 2`) =
√

2, 0 ≤ ` ≤ 4; R ∈ O(12− 2`);

A(−1)(r(`)+`+2)/2(R(x1 . . . x`) ; 24− 2`) = 2, 0 ≤ ` ≤ 8; R ∈ O(24− 2`); .
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Open Problem: dimension shifts and Cohn-Gonçalves
conjectures
Conjecture (Cohn, Gonçalves)
The following limits exist and are equal:

lim
d→∞

A+1(d)√
d

= lim
d→∞

A−1(d)√
d

Numerical evidence by Cohn and Gonçalves suggests even more:
approximately,

A+1(d + 4) ≈ A−1(d)

Theorem (Carneiro, Q-H.)

A+1(x1x2,d + 4) = A−1(d)

We need to pay a price!!! Introduce unwanted weight P = x1x2.
Open question: Can we relate the problems with two different
weights, in the same dimension, same eigenvalue?
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THANK YOU!
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