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GEOMETRIC MOTIVATIONS

Σt surface, then d
dt

∣∣
t=0 Area(Σt) = 0 : Minimal Surfaces CM = 0.

Otto Frei, 1964

d
dt

∣∣ t=0
|Ωt|=1

Area(∂Ωt) = 0 : Constant mean curvature CM = λ.

Classical problem: min {Area(∂Ω) : |Ω| = 1} . Solution: Ω = B.
How to translate these classical principles to the discrete world?



PHYSICAL MOTIVATIONS

Minimize
∑

i 6=j V(|xi − xj|) with V(r) = 1
r12 − 1

r6 or similar:

Survey by Blanc-Lewin 2015, N = 100

Tóth 1956, Heitmann-Radin 1980: sticky disk rigidity.
Schmidt 2013, De Luca-Friesecke 2017: N3/4-fluctuations around
hexagon (sticky disc).
Theil 2006: minimizer resistent to perturbations of V (in the limit
N →∞)
Bétermin-Petrache 2018 observation: Z2 sometimes outperforms A2.
Bétermin-De Luca-Petrache 2018: crystallization to Z2 for “sticky
shell” model (robust under perturbation).



SIMPLIFIED MODELS

Tóth, Heitmann-Radin “Sticky discs”

Bétermin-De Luca-Petrache “Sticky shells”?



What’s the crystal shape?

(Discrete isoperimetric problems)



CONTINUUM ISOPERIMETRIC INEQUALITIES

Find H ⊂ Rd such that for all Ω ⊂ Rd:
Area(∂H)d

Vol(H)d−1 ≤
Area(∂Ω)d

Vol(Ω)d−1

I Equivalently: H minimizes perimeter at fixed volume.

I Can be extended to general notions of “Vol(Ω)” and “Area(∂Ω)”:

Pg(Ω) :=
∫
∂Ω

g(ν(x))dS(x)

Vw(Ω) :=
∫

Ω
w(x)dV(x)

}
con H : Rd → R


w, g ≥ 0,

H(λx) = λH(x)

H convex .

I In this talk we only consider w = 1 for simplicity.

I Optimizer H = {x ∈ Rd : ∀ν, x · ν < g(ν)}Wulff 1901.

I Del Nin - Petrache 2021: discrete-continuum limit for crystals
and quasicrystals.



CONTINUUM CASE PROOFS – 1/4

Strategy 1: PDE + convexity

(Cabré-Ros Oton-Serra 2013, Trudinger 1994) ∆u(x) =
Pg(Ω)

|Ω| x ∈ Ω,

∂u
∂ν (x) = g(ν(x)) x ∈ ∂Ω.

Solution exists, is regular and unique up to constant summand.

∂Ωu := {x ∈ Ω : u(y) ≥ u(x) +∇u(x) · (y− x) y ∈ Ω}.

(x such that tg. plane to graph of u at x supports graph(u|Ω).)



CONTINUUM CASE PROOFS – 2/4

Claim: H ⊂ ∇u(∂Ωu).

I p ∈ H means: p · ν < g(ν) for all ν ∈ Sd−1.

I Let x ∈ Ω min of u(y)− p · y.

I If p ∈ ∂Ω then ∂(u(y)−p·y)
∂ν ≤ 0⇔ ∂u

∂ν (x) ≤ p · ν < g(ν),
contradiction.

I So x is interior. It follows:

I p = ∇u(x) (u smooth),
I u(y) ≥ u(x) + p · (y− x) (for all y ∈ Ω).

Therefore p ∈ ∇u(∂Ωu), proving the claim.

We get |H| ≤ |∇u(∂Ωu)| =
∫
∇u(∂Ωu)

dp ≤
∫
∂Ωu

det[D2u(x)]dx



CONTINUUM CASE PROOFS – 3/4
Linear algebra: λ1 ≤ λ2 ≤ · · · ≤ λd eigenvalues of D2u(x), then

det[D2u(x)] =

d∏
j=1

λj ≤

1
d

d∑
j=1

λj

d

=

(
tr[D2u(x)]

d

)d

=

(
∆u(x)

d

)d

.

We get:

|H| ≤ |∂Ωu|
(

∆u(x)

d

)d

= |∂Ωu|
(

Pg(Ω)

d · |Ω|

)d

≤ |Ω|
(

Pg(Ω)

d · |Ω|

)d

.

|H|
dd ≤

Pg(Ω)d

|Ω|d−1 .

Finally, due to the duality W ↔ H:

Pg(H) =

∫
∂H

g(ν(x))dS ∗=
∫
∂H

x · ν(x)dS =

∫
H

div(x)dx = d|H|.



CONTINUUM CASE PROOFS – 4/4
Strategy 2: Mass transportation proof (sketch)

(Cordero Erausquin - Nazaret - Villani 2004, Figalli-Maggi-Pratelli
2010, Gromov 1983)

I Let T : Ω→ H transport density |H||Ω|1Ω(x) to 1H(x).

I g∗(y) := min{λ > 0 : λy ∈ H} dual norm to g.

I Then g∗(T(x)) ≤ 1 for a.e. x ∈ Ω.

d|Ω|
(
|H|
|Ω|

) 1
d

= d
∫

Ω

(det∇T)
1
d dx

≤
∫

Ω

divT dx =

∫
∂∗Ω

T · νΩ dS

≤
∫
∂∗Ω

g∗(T(x))g(νΩ(x))dS ≤ Pg(Ω).



DISCRETE SHARP ISOPERIMETRIC INEQUALITY

Setup:

I V ⊂ Rd possible positions of points (atoms).

I G = (V,E) undirected graph of possible edges (bonds).

I g : E→ [0,+∞) weight (energy) of edges.

Looking for edge-isoperimetric inequalities of the form

∀Ω ⊂ V finite, (]Ω)d−1 ≤ C(]g∂Ω)d := C

 ∑
(x,y)∈

−→
∂Ω

g(x, y)


d

.

I Sharp inequality: Equality actually achieved for some Ω ⊂ V.

I Interesting case: Equality achieved for∞-many values of ]Ω.



SAMPLE RESULTS

I Hamamuki 2014: Zd product graph with nearest-neighbor
edges, constant g (cubes optimize).

I Gomez-Petrache 2020: The triangular lattice (with g = 1) does
not have a sharp inequality as above, but rather

(]
−→
∂Ω− 6)2

4]Ω− ]
−→
∂Ω + 2

≥ 12,

optimized only by “perfect hexagons” (follows via result for
honeycomb graph).

I Gomez-Petrache 2020: In honeycomb graph hexagons optimize.

I Gomez-Petrache 2020: In the 1-skeleton of the Voronoi diagram
of the BCC, rhombic dodecahedron configurations optimize.

I Gomez-Petrache 2020: Sharp inequalities occur for special
geometries of V, such as reciprocals of Coxeter triangulations.



THE DISCRETE RESULT

I Auxiliary symmetric A : V × V → R with E = {A = 0}, defines
Laplacian ∆Au(x) :=

∑
y∈V A2(y, x)(u(x)− u(y)).

I Solve discrete PDI (discrete PDE not solvable in general) ∆Au(x) ≤ 1
]Ω

∑
(x,y)∈

−→
∂Ω

g(x, y) for x ∈ Ω

u(y)− u(x) =
g(x,y)
A(x,y) for (x, y) ∈

−→
∂Ω.

I Some notations:

∂u(x) := {p ∈ Rd : (∀ z ∈ Ω), u(x) ≤ u(z) + p · (x− z)},
∂proxu(x) := {p ∈ Rd : (∀ z : z ∼ x), u(x) ≤ u(z) + p · (x− z)},

Hg :=

{
p ∈ Rd : (∀(x, y) ∈

−→
∂Ω), p · (y− x) ≤ g(x, y)

A(x, y)

}
.



THE DISCRETE RESULT (GOMEZ-PETRACHE 2020)
We find an analogue to strategy 1:

|Hg|
(a)
≤

∣∣∣∣∣⋃
x∈Ω

∂u(x)

∣∣∣∣∣ (b)
=
∑
x∈Ω

|∂u(x)|

(c)
≤

∑
x∈Ω

|∂proxu(x)|

(d)

≤
∑
x∈Ω

cx (∆Au(x))
d

(e)
≤ (max

x∈Ω
cx)]Ω

 1
]Ω

∑
(x,y)∈

−→
∂Ω

g(x, y)


d

= max
x∈Ω

cx

(
]g
−→
∂Ω
)d

(]Ω)d−1 .

Generalization of arithmetic-geometric inequality:

|∂proxu(x)| ≤ cx|∆Au(x)|d.



MAIN RESULT – 1/2

Necessary conditions for equality:

I cx, x ∈ Ω are all equal.

I G|Ω dual graph of a face-to-face decomposition of ∂u(Ω) into
convex polyhedra of equal volume

I The PDI becomes a PDE (equality achieved).

Sufficient conditions for equality. (assume Ω ⊂ V connected in G).

I The complex made of vertices and edges of G|Ω ∪
−→
∂Ω is

reciprocal to the collection of d- and (d− 1)-cells of an
equal-volume Voronoi tessellation of a convex polyhedron H.

I If Fx,y denotes the (d− 1)-dimensional facet of the Voronoi

tessellation which is dual to edge (x, y) of G, then A2(x,y)|y−x|
Hd−1(Fx,y)

takes the same value for all edges {x, y} of G.



MAIN RESULT – 2/2

Relation to optimal transport

I Functions u achieving equality are precisely of the form
u = λuAlek + ` where λ > 0, ` is an affine function and uAlek is the
Aleksandrov solution to a semidiscrete optimal transport
problem between |H|]Ω

∑
x∈Ω δx and 1H(x)dx with transport cost

|x− y|2.

The subdifferential optimization problem

Set Hv(c) := {p : v · p ≤ c} and for fixed V ⊂ Rd we define

CV := max

{∣∣∣∣∣⋂
v∈V

Hv(cv)

∣∣∣∣∣ : ~c = (cv)v∈V ∈ RV ,
∑
v∈V

cv = 1

}
.

I Optimizer exists iff SpanV = Rd,
∑

v∈V v = 0.

I The face Fv with normal v of the optimizer has area d CV |v|.



THE ∂proxu(x)-INEQUALITY

I We need |∂proxu(x)| ≤ cx(∆Au(x))d and discussion of equality
case if cx, x ∈ Ω all equal.

I Apply the above with Vx := {(y− x)A2(x, y) : y ∼ x}, and then
cx = CVx .

I We have

1
∆Au(x)

∂proxu(x) =
⋂

v∈Vx

Hv(cv) with cv =
A2(y, x)(u(y)− u(x))

∆Au(x)
.

I Equality case (assuming Ω connected): |Fx,y|/(|y− x|A2(x, y))
constant over all edges.



FURTHER CONNECTIONS/DIRECTIONS

I Aurenhammer 1987, Rybnikov 1999: translation between
liftings, weighted Voronoi tessellations, reciprocal graphs.

I Mérigot 2013, Benamou-Froese 2017: link of the above to
semidiscrete optimal transport.

I Trudinger 1994: further continuum isoperimetric inequalities
(possible extension to operators of higher degree).

I Optimal discrete PDI in general graphs: first bounds in
Gomez-Petrache 2020, general Cheeger type bounds to be
explored.

I More complicated optimal inequalites in periodic graphs do
exist (cf. triangular graph case above), classification missing.


	

