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The Falconer distance problem

m For E C RY, define the distance set of E to be

A(E) ={|x—y|:x,y € E}.

m The Falconer distance problem asks, for compact E C RY,
how large the Hausdorff dimension of E must be to ensure
that A(E) has positive (1-dimensional) Lebesgue measure.

m Falconer (1986) proved that the threshold dim E > % was

sufficient, and that no threshold below % is sufficient. The

conjectured best threshold is %.
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Results on the Falconer problem

m In 1999 Wolff proved the threshold 4/3 in dimension 2, and in
2005 Erdogan proved g + % for d > 3.

m The best current results are

5/4, d = 2(Guth, losevich, Ou, Wang)
9/5, d = 3(Du, Guth, losevich, Ou, Wang, Zhang)
% + %, d > 4,d even (Du, losevich, Ou, Wang, Zhang)

$+ %+ a@=n, d>4dodd (Du,Zhang)



Strategy for Falconer problem

m If E is compact, for any s < dim E there is a probability
measure 4 supported on E such that
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and
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Strategy for Falconer problem

m If E is compact, for any s < dim E there is a probability
measure p supported on E such that

w(Br(x)) S r?

and

Is(1) :=//|x—y|5 dpu(x) du(y) < oc.

m The measure p is called a Frostman probability measure with
exponent s.
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Strategy for Falconer problem

m Define a measure v by

[ @ avte) = [ #(x = y1) dux)dun).

m v is a probability measure supported on A(E), so to prove
A(E) has positive Lebesgue measure it suffices to show v is
absolutely continuous.
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Strategy for Falconer problem

m Let ©° be an approximation to the identity, and let
V¢ = x .

m For ACR, we have

[ (e de S A2 o
A

m The left hand side has limit ©(A), so it suffices to prove a
bound on |[v¢||;2 which is independent of .
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Strategy for configuration problems

m This strategy generalizes easily.

m Given ¢ : (RN — RM, define v by

/f(t) dy(t):/f(CI)(xl,...,xN)) du(xt) - du(x").

m If |[v¢]|,2 is bounded independent of &, then
{o(x1,...,xN) : x' € E} has positive measure.
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Congruence of point configurations

m A (k + 1)-point configuration in R is simply an element of
(RY)KF1 ie., a k+1 tuple x = (x%,..., xk*1) where each

1

x'=(x{,...,x}) is a vector in RY.

m We say (k + 1)-point configurations x and y are congruent,
and write x ~ y, if there exists § € O(RY), z € R such that
forall i =1,....k + 1 we have y' = Ox' + z (briefly,

y =0x+ z).

m Given £ C RY, let Ax(E) denote the set of congruence
classes determined by E.

m We may identify A(E) with A;(E).
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Point configuration congruence problem

m Question: Given a compact set £ C RY, how large must
dim E be to ensure Ag(E) has positive measure?

m In order to pose this question, we must choose a measure on
Ay(E).

m The choice of measure depends on whether k < d or k > d.

m When k < d, each of the pairwise distances may be chosen
independently. We may therefore identify Ay (E) with a

k
subset of ]R( ;1) equipped with (kgl)—dimensional Lebesgue
measure.



Example: The case k =d =2

m Let x = (x1,x2,x3) be a 3-point configuration in R2.



Example: The case k =d =2

m Let x = (x!, x%,x3) be a 3-point configuration in R?.

m If we fix [x! — x?| = a and |x! — x3| = b, the last distance
|x?2 — x3| could take any value between |a — b| and a + b.



Configuration congruence results in the k < d case

Theorem (Greenleaf-losevich-Liu-Palsson, 2015)
Let k < d, and let E C RY be a compact set. If
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then A(E) has positive (“1*)-dimensional Lebesgue measure.



Configuration congruence results in the k < d case

Theorem (Greenleaf-losevich-Liu-Palsson, 2015)

Let k < d, and let E C RY be a compact set. If

d—1

d|mE>d—k—+1,

then A(E) has positive (“1*)-dimensional Lebesgue measure.

m In the case k = 1 this coincides with Falconer’s % threshold.
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Overdetermined configurations

m When k > d, the system of equations

X' =] = ti;

becomes overdetermined; by fixing some of the values t;; we
determine the others.

m In this case we may still identify Ay (E) with ( J2r ) -tuples of
(3

pairwise distances, but the resulting subset of R ) has

measure zero.



Example: The case k =3,d =2

m With 4 points, if we fix 5 of the pairwise distances there are
only 2 choices for the last distance.
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Overdetermined congruence problem

m Say that a configuration x is non-degenerate if x?, ..., x9+1

affinely independent.

are

m Two non-degenerate configurations x, y are congruent if and
only if there exists # € O(RY),z € R? such that y = Ox + z.

m The non-degenerate congruence classes can be identified with
a space of dimension m, where

m=d(k+1)— (d;1>



Overdetermined congruence result

Theorem (Chatzikonstantinou-losevich-Mkrtchyan-Pakianathan,
2017)

Letd >2and k > 1, and let m = d(k + 1) — (“3). Let E C RY
be compact. If dimE > d — kL_H then Ay (E) has positive
m-dimensional measure.




Overdetermined congruence result

Theorem (Chatzikonstantinou-losevich-Mkrtchyan-Pakianathan,
2017)

Letd >2and k > 1, and let m = d(k + 1) — (“3). Let E C RY
be compact. If dimE > d — kL_H then Ay (E) has positive
m-dimensional measure.

m This approach generalizes to other overdetermined
configuration problems if the relevant geometric features can
be characterized in terms of a group action.
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If E C RY is compact and dim E > d — 1+ %, then V(E) has
non-empty interior.
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Volumes

Theorem (Greenleaf-losevich-Taylor, 2020)
Given E C RY, define

V(E) = {det(x},...,x9) : x' € E}

If E C RY is compact and dim E > d — 1+ %, then V(E) has
non-empty interior.

m If dim E < d — 1 then E may be contained in a hyperplane
and determine no non-trivial volumes.

m It follows the threshold d — 1 + % cannot be improved by

more than %.
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Volume types of point configurations

m Let x be a k-point configuration in RY je.,
1 k
x=(x"..,x")
for vectors

x'=(xi,..,x}) e RY.

m The volume type of x is the vector

{det(x, ..., x¥) )1 <ciyek € RE.



A 5-point configuration in R3
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Volume types of configurations

m Given k > d and E C RY, let Vi 4(E) denote the set of
volume types determined by configurations of points in E. Let
Vk,d = Vk,d(]Rd).

m Let &y y: (RY)k — Vk.4 be the map taking configurations to
their volume types.

m If g € SLy(R), it is clear that @ 4(gx) = i g4(x).
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independent.
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Volume types and the action of SL,(RR)

d

m Suppose Py 4(x) = ®y 4(y), and x1, ..., x¢ are linearly

independent.

m Define

g= (yl, ...,yd)(xl, ...,Xd)_l.

m Then g € SLy(R), and gx’' = y/ for i =1,2,...,d.
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Volume types and group actions

m For /i > d, write

d d
=N "axd, Y =D bijyl
j=1 j=1

m Easy to prove a;j = b;j, so gx' = y' for all i.

m For every non-degenerate x, there exists x of the form
= 1 d—1
x=(e,..e"

with q)k,d(}) = q)k,d(x)-

ted, 29+1 ...,zk)
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Theorem

m We can therefore identify V) 4 with R™, where
m = d(k — d) + 1 (ignoring degenerate configurations).

m With this identification, our result is as follows.
Theorem (Galo-M., 2021)

Let k>d >?2, let m=d(k—d)+1, and let E C RY be compact.
Ifdim E > d — =L then Lm(Vk.4(E)) > 0.

m If k = d, then our threshold is d — 1 + %, which is the
threshold in the Greenleaf-losevich-Taylor result.
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Setup

m If E is compact, for any s < dim E there is a probability
measure p supported on E such that

H(B.(x)) S r°

and

L) = [ [ Ix=y17* duto) dn(y) < .

m Define a measure vy 4 on Vy 4 by

/f(t) dI/k’d(t) —/f(d)k,d(x)) d,uk(x).

m Let Vli,t be the convolution of vy ; with an approximate

identity. Our goal is to prove L2 bounds on VL ., independent
of .
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m We have
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The k = d case

m We have

v~ | A (x)
| det( xd)—t|<e

m Let ¢ be a Schwartz function supported in the range
% < €] < 4 and constantly equal to 1 in the range

1< J¢] <2, and let [3(€) = (277€)a(€) be the
corresponding Littlewood-Paley projection.

m The above integral is

> i O1) - (x7) e
det(x!

J1>>jg>0



The k = d case

m Define a generalized Radon transform by

Rtf(xl, . -Xd_l) = f(xd) dog i .. 7X471(xd)7

— [det(x1,-- x¥)=t
e <1

where 0, 1 ... ,a-1 is the surface measure.
k) ) 9’



The k = d case

m Define a generalized Radon transform by

- d
Ref(xt, - x971) = et )=t f(x9) doy ... wa-1(x7),
x| x9|<1

where o, 1 ... ,a-1 is the surface measure.
k) ) 9’

m We have
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The k = d case

m Define a generalized Radon transform by

7?,1_-f'—(X]'7 Ce Xd_l) = det(Xl,“- ,Xd):t f(Xd) dO't’X17...7Xd—1(Xd),

x| <1

where o, 1 ... ,a-1 is the surface measure.
k) ) 9’

m We have

Vi.a(t) = Y (Reptjy i @ -+ @ pj)

J

m The Greenleaf-losevich-Taylor result is obtained from this by

studying the mapping properties of generalized Radon
transforms.
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Properties of generalized Radon Transforms

m R:pu; has Fourier support concentrated at scale 2

m R; is a bounded map L2 — L%_,, where L2 denotes the
2
Sobolev space with norm

1flli2 = 11+ [€P)2F(€)]| 2.

m This, together with Plancherel, gives bounds on the L? inner
product

(Repujs pj @ -+ @ puj)
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The k = d case

We have
Via(t) = > (Reptjypj @ -+ @ puj)

J

d—1
~ > IR el 2l
j
_d-1 d
~ Y277 |l
j

~ ZQ*(%)‘JQd(dES)J
J




The k = d case

We have
Via(t) = > (Reptjypj @ -+ @ puj)

J

d—1
~ > IR el 2l
j
_d-1 d
~ Y277 |l
j

~ ZQ*(%)‘JQd(dES)J
J

The sum is finite when s > d — 1+ %.



Reducing to the k = d case

m For general k > d, we have

6’"/ dpk(x).
|Pk,a(x)—t|<e

<
X0
Q.
—

~+
N—r

%



Reducing to the k = d case

m For general kK > d, we have

Vi a(t) = E_m/ dpk(x).

|¢kyd(X)—t|<E

m T herefore,

Wiglt e [ [ Ak (x) du ().
S|P a(x) =Pk a(y)|<2e



Reducing to the kK = d case

m For general kK > d, we have

Vi a(t) = 5’”/ dpk(x).
|®k,a(x)—t]<e

m Therefore,

v allze 6"’// dp*(x) du(y).
[sa(x)— s a(y)| <22

NZ///JJ o<t - pi(gx®) du(x)dg.



Reducing to the k = d case

m Applying the bound |||~ < 2/(47%) to the last k — d terms,
this is

Z2jd(ds)(kd)//uj(gxl)...uj(gxd) dpd(x)dg
J



Reducing to the k = d case

m Applying the bound ||| < 2/(d=9) to the last k — d terms,
this is

3 plald=s)(k=) / / wi(gxt) - 1i(gx?) du’(x)dg
j

m This integral is the one which arose in the kK = d case, and we
can use the mapping properties of the generalized Radon
transform to bound.



Reducing to the kK = d case

m Applying the bound || x| < 2/(9=5) to the last k — d terms,
this is

3 plald=s)(k=) / / wi(gxt) - 1i(gx?) du’(x)dg
j

m This integral is the one which arose in the k = d case, and we
can use the mapping properties of the generalized Radon
transform to bound.

m The sum is finite when s > d — 2‘1(%{1.
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Sharpness

Theorem (Galo-M.,2021)
Let k > d > 2. For any

d’(d — 1)

d— 49—
ST k-1

there exists compact E C R? such that dim E = s and Vk 4(E) has
measure zero.

m Take a lattice in the unit cube with spacing 1/q and thicken
each point by q /s,

m This approximates a set of dimension s in RY.

m Map the square lattice to a spherical lattice.



Sharpness
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Sharpness

m The spherical grid determines ~ q - qd(k=1) — gd(k-1)+1
volume types

m The thickened set has an volume type set of measure
~ gd(k—1)+1 (q—d/s)d(k*d)ﬂ_

mlfs<d—-2WD ihictends to zero as g — 0o
d(k—T)+1 aq :
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Distance chains

m Let G be a graph on the vertices {1, ..., k}.

m A natural Falconer-type question about point configurations
asks how large the Hausdorff dimension of a set must be to
ensure it determines a positive measure worth of distances
corresponding to edges.

m The following result applies when G is a chain.

Theorem (Bennett-losevich-Taylor, 2015)
Let d,k > 2, and let E C RY be compact. If dim E > %, the set

{(Ix* = X2, ..., |x*"T = xK)) : x" € E}

has non-empty interior.
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m This result was later generalized from chains to trees.

Theorem (losevich-Taylor, 2019)

Let d,k > 2 and let E C RY be compact. Let T be a tree on the
vertices {1, ..., k} with edge set £. Ifdim E > 2t the set
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Distance trees

m This result was later generalized from chains to trees.

Theorem (losevich-Taylor, 2019)

Let d,k > 2 and let E C RY be compact. Let T be a tree on the
vertices {1, ..., k} with edge set £. Ifdim E > 2t the set

{(IX" = [) i jyee : X' € E}

has non-empty interior.

m For both chains and trees, the threshold does not depend on
k.
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Volume chains

m Our second result is an analogue for hypergraph chains of
volumes.

Theorem (Galo-M., 2021)

Let k,d > 2 and let E C RY pe compact. IfdmE >d—1+ %,,
then

{{det(xj,xj‘H, ce ,Xj+d_1)}1§j§k+1_d a Xl, ...,Xk € E}
Has non-empty interior.
m In the kK = d case, this is the same as our first result.

m The threshold does not depend on k, as it does in our first
result.
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The k =d + 1 case

m Suppose k = d + 1. The quantity we want to bound is

-2 d+1
€ /det(xl,...,xd)—t|<a dp (%)

det(x?,..., x4t —t/|<e
|

S gty e 1O ()

J 7 det(x?,... xIH ) —t'|<e

%812/ Rt’MJ(X27-~->Xd)d:ud(X)‘
; | det(x!,...,x4)—t|<e



The k =d + 1 case

m This reduces matters from the k = d + 1 case to the kK = d
case.



The k =d + 1 case

m This reduces matters from the k = d + 1 case to the k = d
case.

m One can handle arbitrary k > d by iterating this process.



The End

Thanks for listening!



