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The Falconer distance problem

For E ⊂ Rd , define the distance set of E to be

∆(E ) := {|x − y | : x , y ∈ E}.

The Falconer distance problem asks, for compact E ⊂ Rd ,
how large the Hausdorff dimension of E must be to ensure
that ∆(E ) has positive (1-dimensional) Lebesgue measure.

Falconer (1986) proved that the threshold dimE > d+1
2 was

sufficient, and that no threshold below d
2 is sufficient. The

conjectured best threshold is d
2 .
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Results on the Falconer problem

In 1999 Wolff proved the threshold 4/3 in dimension 2, and in
2005 Erdogan proved d

2 + 1
3 for d ≥ 3.

The best current results are


5/4, d = 2(Guth, Iosevich,Ou,Wang)
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d
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4 , d ≥ 4, d even (Du, Iosevich,Ou,Wang ,Zhang)
d
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4 + 1
4(d−1) , d ≥ 4, d odd (Du,Zhang)
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Strategy for Falconer problem

If E is compact, for any s < dimE there is a probability
measure µ supported on E such that

µ(Br (x)) . r s

and

Is(µ) :=

∫ ∫
|x − y |−s dµ(x) dµ(y) <∞.

The measure µ is called a Frostman probability measure with
exponent s.
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Strategy for Falconer problem

Define a measure ν by∫
f (t) dν(t) =

∫
f (|x − y |) dµ(x)dµ(y).

ν is a probability measure supported on ∆(E ), so to prove
∆(E ) has positive Lebesgue measure it suffices to show ν is
absolutely continuous.
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Strategy for Falconer problem

Let ϕε be an approximation to the identity, and let
νε = ϕε ∗ ν.

For A ⊂ R, we have∫
A
νε(t) dt . |A|1/2‖νε‖L2 .

The left hand side has limit ν(A), so it suffices to prove a
bound on ‖νε‖L2 which is independent of ε.
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Strategy for configuration problems

This strategy generalizes easily.

Given Φ : (Rd)N → RM , define ν by

∫
f (t) dν(t) =

∫
f (Φ(x1, ..., xN)) dµ(x1) · · · dµ(xN).

If ‖νε‖L2 is bounded independent of ε, then
{Φ(x1, ..., xN) : x i ∈ E} has positive measure.
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Congruence of point configurations

A (k + 1)-point configuration in Rd is simply an element of
(Rd)k+1, i.e., a k + 1 tuple x = (x1, ..., xk+1) where each
x i = (x i1, ..., x

i
d) is a vector in Rd .

We say (k + 1)-point configurations x and y are congruent,
and write x ∼ y , if there exists θ ∈ O(Rd), z ∈ Rd such that
for all i = 1, ..., k + 1 we have y i = θx i + z (briefly,
y = θx + z).

Given E ⊂ Rd , let ∆k(E ) denote the set of congruence
classes determined by E .

We may identify ∆(E ) with ∆1(E ).
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Point configuration congruence problem

Question: Given a compact set E ⊂ Rd , how large must
dimE be to ensure ∆k(E ) has positive measure?

In order to pose this question, we must choose a measure on
∆k(E ).

The choice of measure depends on whether k ≤ d or k > d .

When k ≤ d , each of the pairwise distances may be chosen
independently. We may therefore identify ∆k(E ) with a

subset of R(k+1
2 ), equipped with

(k+1
2

)
-dimensional Lebesgue

measure.
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Example: The case k = d = 2

x1 x2

x3

Let x = (x1, x2, x3) be a 3-point configuration in R2.

If we fix |x1 − x2| = a and |x1 − x3| = b, the last distance
|x2 − x3| could take any value between |a− b| and a + b.
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Configuration congruence results in the k ≤ d case

Theorem (Greenleaf-Iosevich-Liu-Palsson, 2015)

Let k ≤ d, and let E ⊂ Rd be a compact set. If

dimE > d − d − 1

k + 1
,

then ∆k(E ) has positive
(k+1

2

)
-dimensional Lebesgue measure.

In the case k = 1 this coincides with Falconer’s d+1
2 threshold.
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Overdetermined configurations

When k > d , the system of equations

|x i − x j | = ti ,j

becomes overdetermined; by fixing some of the values ti ,j we
determine the others.

In this case we may still identify ∆k(E ) with
(k+1

2

)
-tuples of

pairwise distances, but the resulting subset of R(k+1
2 ) has

measure zero.
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Example: The case k = 3, d = 2

x1

x2 x3

x4

x1

x2 x3

x4

With 4 points, if we fix 5 of the pairwise distances there are
only 2 choices for the last distance.



Overdetermined congruence problem

Say that a configuration x is non-degenerate if x1, ..., xd+1 are
affinely independent.

Two non-degenerate configurations x , y are congruent if and
only if there exists θ ∈ O(Rd), z ∈ Rd such that y = θx + z .

The non-degenerate congruence classes can be identified with
a space of dimension m, where

m = d(k + 1)−
(
d + 1

2

)
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Overdetermined congruence result

Theorem (Chatzikonstantinou-Iosevich-Mkrtchyan-Pakianathan,
2017)

Let d ≥ 2 and k ≥ 1, and let m = d(k + 1)−
(d+1

2

)
. Let E ⊂ Rd

be compact. If dimE > d − 1
k+1 , then ∆k(E ) has positive

m-dimensional measure.

This approach generalizes to other overdetermined
configuration problems if the relevant geometric features can
be characterized in terms of a group action.
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Volumes

Theorem (Greenleaf-Iosevich-Taylor, 2020)

Given E ⊂ Rd , define

V(E ) = {det(x1, ..., xd) : x i ∈ E}

If E ⊂ Rd is compact and dimE > d − 1 + 1
d , then V(E ) has

non-empty interior.

If dimE ≤ d − 1 then E may be contained in a hyperplane
and determine no non-trivial volumes.

It follows the threshold d − 1 + 1
d cannot be improved by

more than 1
d .
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Volume types of point configurations

Let x be a k-point configuration in Rd , i.e.,

x = (x1, ..., xk)

for vectors
x i = (x i1, ..., x

i
d) ∈ Rd .

The volume type of x is the vector

{det(x i1 , ..., x id )}1≤i1<···<id≤k ∈ R(kd).
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A 5-point configuration in R3



Volume types of configurations

Given k ≥ d and E ⊂ Rd , let Vk,d(E ) denote the set of
volume types determined by configurations of points in E . Let
Vk,d = Vk,d(Rd).

Let Φk,d : (Rd)k → Vk,d be the map taking configurations to
their volume types.

If g ∈ SLd(R), it is clear that Φk,d(gx) = Φk,d(x).
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Volume types and the action of SLd(R)

Suppose Φk,d(x) = Φk,d(y), and x1, ..., xd are linearly
independent.

Define

g = (y1, ..., yd)(x1, ..., xd)−1.

Then g ∈ SLd(R), and gx i = y i for i = 1, 2, ..., d .
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Volume types and group actions

For i > d , write

x i =
d∑

j=1

ai ,jx
j , y i =

d∑
j=1

bi ,jy
j .

Easy to prove ai ,j = bi ,j , so gx i = y i for all i .

For every non-degenerate x , there exists x̃ of the form

x̃ = (e1, ..., ed−1, ted , zd+1, ..., zk)

with Φk,d(x̃) = Φk,d(x).
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Theorem

We can therefore identify Vk,d with Rm, where
m = d(k − d) + 1 (ignoring degenerate configurations).

With this identification, our result is as follows.

Theorem (Galo-M., 2021)

Let k ≥ d ≥ 2, let m = d(k − d) + 1, and let E ⊂ Rd be compact.
If dimE > d − d−1

2k−d , then Lm(Vk,d(E )) > 0.

If k = d , then our threshold is d − 1 + 1
d , which is the

threshold in the Greenleaf-Iosevich-Taylor result.
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Let νεk,t be the convolution of νk,t with an approximate

identity. Our goal is to prove L2 bounds on νεk,t , independent
of ε.
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The k = d case

We have

νεd ,d(t) ≈ ε−1

∫
| det(x1,...,xd )−t|<ε

dµd(x)

Let ψ be a Schwartz function supported in the range
1
2 ≤ |ξ| ≤ 4 and constantly equal to 1 in the range
1 ≤ |ξ| ≤ 2, and let µ̂j(ξ) = ψ(2−jξ)µ̂(ξ) be the
corresponding Littlewood-Paley projection.

The above integral is

ε−1
∑

j1>···>jd>0

∫
| det(x1,...,xd )−t|<ε

µj1(x1) · · ·µjd (xd) dx
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The k = d case

Define a generalized Radon transform by

Rt f (x1, · · · xd−1) =

∫
det(x1,··· ,xd )=t
|x1|,...,|xd |≤1

f (xd) dσt,x1,··· ,xd−1(xd),

where σt,x1,··· ,xd−1 is the surface measure.

We have

νεd ,d(t) ≈
∑
j

〈Rtµj , µj ⊗ · · · ⊗ µj〉

The Greenleaf-Iosevich-Taylor result is obtained from this by
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Properties of generalized Radon Transforms

Rtµj has Fourier support concentrated at scale 2j

Rt is a bounded map L2 → L2
d−1

2

, where L2
r denotes the

Sobolev space with norm

‖f ‖L2
r

= ‖(1 + |ξ|2)r/2f̂ (ξ)‖L2 .

This, together with Plancherel, gives bounds on the L2 inner
product

〈Rtµj , µj ⊗ · · · ⊗ µj〉
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Reducing to the k = d case

For general k ≥ d , we have

νεk,d(t) ≈ ε−m
∫
|Φk,d (x)−t|<ε

dµk(x).

Therefore,

‖νεk,d‖2
L2 ≈ ε−m

∫ ∫
|Φk,d (x)−Φk,d (y)|<2ε

dµk(x) dµk(y).

≈
∑
j

∫ ∫
µj(gx

1) · · ·µj(gxk) dµk(x)dg .



Reducing to the k = d case

For general k ≥ d , we have

νεk,d(t) ≈ ε−m
∫
|Φk,d (x)−t|<ε

dµk(x).

Therefore,

‖νεk,d‖2
L2 ≈ ε−m

∫ ∫
|Φk,d (x)−Φk,d (y)|<2ε

dµk(x) dµk(y).

≈
∑
j

∫ ∫
µj(gx

1) · · ·µj(gxk) dµk(x)dg .



Reducing to the k = d case

For general k ≥ d , we have

νεk,d(t) ≈ ε−m
∫
|Φk,d (x)−t|<ε

dµk(x).

Therefore,

‖νεk,d‖2
L2 ≈ ε−m

∫ ∫
|Φk,d (x)−Φk,d (y)|<2ε

dµk(x) dµk(y).

≈
∑
j

∫ ∫
µj(gx

1) · · ·µj(gxk) dµk(x)dg .



Reducing to the k = d case

Applying the bound ‖µj‖L∞ ≤ 2j(d−s) to the last k − d terms,
this is∑

j

2jd (d−s)(k−d)

∫ ∫
µj(gx

1) · · ·µj(gxd) dµd(x)dg

This integral is the one which arose in the k = d case, and we
can use the mapping properties of the generalized Radon
transform to bound.

The sum is finite when s > d − d−1
2k−d .



Reducing to the k = d case

Applying the bound ‖µj‖L∞ ≤ 2j(d−s) to the last k − d terms,
this is∑

j

2jd (d−s)(k−d)

∫ ∫
µj(gx

1) · · ·µj(gxd) dµd(x)dg

This integral is the one which arose in the k = d case, and we
can use the mapping properties of the generalized Radon
transform to bound.

The sum is finite when s > d − d−1
2k−d .



Reducing to the k = d case

Applying the bound ‖µj‖L∞ ≤ 2j(d−s) to the last k − d terms,
this is∑

j

2jd (d−s)(k−d)

∫ ∫
µj(gx

1) · · ·µj(gxd) dµd(x)dg

This integral is the one which arose in the k = d case, and we
can use the mapping properties of the generalized Radon
transform to bound.

The sum is finite when s > d − d−1
2k−d .



Sharpness

Theorem (Galo-M.,2021)

Let k ≥ d ≥ 2. For any

s < d − d2(d − 1)

d(k − 1) + 1
,

there exists compact E ⊂ R2 such that dimE = s and Vk,d(E ) has
measure zero.

Take a lattice in the unit cube with spacing 1/q and thicken
each point by q−d/s .

This approximates a set of dimension s in Rd .

Map the square lattice to a spherical lattice.
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Sharpness

The spherical grid determines ≈ q · qd(k−1) = qd(k−1)+1

volume types

The thickened set has an volume type set of measure

≈ qd(k−1)+1
(
q−d/s

)d(k−d)+1
.

If s < d − d2(d−1)
d(k−1)+1 , this tends to zero as q →∞.
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Distance chains

Let G be a graph on the vertices {1, ..., k}.

A natural Falconer-type question about point configurations
asks how large the Hausdorff dimension of a set must be to
ensure it determines a positive measure worth of distances
corresponding to edges.

The following result applies when G is a chain.

Theorem (Bennett-Iosevich-Taylor, 2015)

Let d , k ≥ 2, and let E ⊂ Rd be compact. If dimE > d+1
2 , the set

{(|x1 − x2|, ..., |xk−1 − xk |) : x i ∈ E}

has non-empty interior.
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Distance trees

This result was later generalized from chains to trees.

Theorem (Iosevich-Taylor, 2019)

Let d , k ≥ 2 and let E ⊂ Rd be compact. Let T be a tree on the
vertices {1, ..., k} with edge set E . If dimE > d+1

2 , the set

{(|x i − x j |)(i ,j)∈E : x i ∈ E}

has non-empty interior.

For both chains and trees, the threshold does not depend on
k.
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Volume chains

Our second result is an analogue for hypergraph chains of
volumes.

Theorem (Galo-M., 2021)

Let k, d ≥ 2 and let E ⊂ Rd be compact. If dimE > d − 1 + 1
d ,

then

{{det(x j , x j+1, · · · , x j+d−1)}1≤j≤k+1−d : x1, ..., xk ∈ E}.

Has non-empty interior.

In the k = d case, this is the same as our first result.

The threshold does not depend on k, as it does in our first
result.



Volume chains

Our second result is an analogue for hypergraph chains of
volumes.

Theorem (Galo-M., 2021)

Let k, d ≥ 2 and let E ⊂ Rd be compact. If dimE > d − 1 + 1
d ,

then

{{det(x j , x j+1, · · · , x j+d−1)}1≤j≤k+1−d : x1, ..., xk ∈ E}.

Has non-empty interior.

In the k = d case, this is the same as our first result.

The threshold does not depend on k, as it does in our first
result.



Volume chains

Our second result is an analogue for hypergraph chains of
volumes.

Theorem (Galo-M., 2021)

Let k, d ≥ 2 and let E ⊂ Rd be compact. If dimE > d − 1 + 1
d ,

then

{{det(x j , x j+1, · · · , x j+d−1)}1≤j≤k+1−d : x1, ..., xk ∈ E}.

Has non-empty interior.

In the k = d case, this is the same as our first result.

The threshold does not depend on k, as it does in our first
result.



The k = d + 1 case

Suppose k = d + 1. The quantity we want to bound is

ε−2

∫
| det(x1,...,xd )−t|<ε

| det(x2,...,xd+1)−t′|<ε

dµd+1(x)

≈ ε−2
∑
j

∫
| det(x1,...,xd )−t|<ε

| det(x2,...,xd+1)−t′|<ε

µj(x
d+1)dµd(x)dxd+1

≈ ε−1
∑
j

∫
| det(x1,...,xd )−t|<ε

Rt′µj(x
2, ..., xd)dµd(x).
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The k = d + 1 case

This reduces matters from the k = d + 1 case to the k = d
case.

One can handle arbitrary k ≥ d by iterating this process.
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The End

Thanks for listening!


