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Let P, the space of polynomials in S9 of degree at most L with the
scalar product

(P,Q) = / PQ do,
Sd
for P, Q € P,.

Observe that
dimPp = hy 4 ~ L9
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Let {xL 1 C S9 be such that

| det(QF (x7))il

is maximal where Qf, ..., Q; is an ON basis of P.

These sets of points are called Fekete (or extremal fundamental
systems).



Rob Womersley web http://web.maths.unsw.edu.au/ rsw/Sphere/ 529 Fekete points



For xi, ... ,xﬁL € S9 Fekete points define,
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For xi, ... ,xﬁL € S9 Fekete points define
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the Lagrange polynomials.

Clearly
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() = 65, |H() <1



For Q@ € P,

and

hy he
Qdo = Q) [ thdo =" Qsut
sd =1 s =1

where WjL = Jau éjL do are the integration weights.



Theorem (M.-Ortega Cerda 08) Fekete points are asymptotically
uniformly distributed:

or equivalently

e the (L) spherical cap discrepancy

XL C
U0

Doo({xf }751) =

Cch

satisfies
Jlim Do so({Xf L) = 0.
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27+ weights corresponding to 256 Fekete points from Rob Womersley web http://web.maths.unsw.edu.au/ rsw/Sphere/
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Sobolev spaces

For £ > 0, H, is the space of the spherical harmonics of degree ¢
—AY =((l+d-1)Y, Y eH,.
Then L2(S%) = @~ He and for f € L2(S?) the Fourier expansion is

f = Z BViw  fu= (F.Yie) = [ FViudo,
Sd
where { Y}, k}k'mw is an ON basis of H,;. Given s >0

+oo dim Hy
H*(S) = {fEL2 S > > 1+ |f“|2<+oo}
=0 k=1

with the norm

400 dim H,
1 llgs sy = (Z > (1+52)5|fe,k|2>

(=0 k=1

1/2

H*(S?) is continuously embedded in C*(S9) if s > k + d/2.
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From Lu-Wang 21 (Grochenig 20) and previous results from
M.-Ortega Cerda 08, we get the following:

For any € > 0, let x1,...,xy € S be a set of N = hi 1oL ~ L4
Fekete points for P|(14¢)] and let wa, ..., wy be the corresponding
weights. Then for s > d/2

N
sup / fdo— f(xp)wj| S N=s/9,
[fllus<1|/S9 jz;

By Brauchart-Hesse 07 this bound is optimal (see also
Brandolini-Choirat-Colzani-Gigante-Seri- Travaglini 14).
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1 N
/Sdde_sz:;f(Xj)

N4 < sup
[Flls<1

= wee(Xp, s).
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Then it is natural to ask for the larger s such that (Xy) is a QMC
design for H® (strength).
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e Spherical t-designs, with N ~ t?, form a QMC design for H* for all
s> d/2.

e For ¢ 5 <s<3 + 1
1 _
wee(Xy,s)? = Csg — 2 Z Ixi — x| d.
iJj

asymptotic estimates of the maximal Riesz energy (Wagner 92) imply
that energy maximizers form a sequence of QMC designs for H® (By
Stolarsky's formula wee(Xy, 52) = Da(Xn) < Doo(Xn)).

e Numerical results for the strength in S?:
Fekete points 3/2
Coulomb energy minimizers 2
Logarithmic energy minimizers 3

e Random configurations (in expectation):
Uniform and independent points are not QMC for any s > d/2
Jittered sampling points are QMC if % <s< % +1
Spherical ensemble: Hirao 18, Berman 19 (concentration)



Extremal energies in S?

Define for s < 2 and xq,...,xy € S?
Z N and E Zlog
|xi — xj|° og* |XI_X_/|
i#£j i#j

Recall the conjecture about the extremal energy
(Borodachov-Hardin-Saff 19)

2l-s 3/2)5/2
Es(N) = 2 — sN2 * (f/(437)5/g;/\2(5) NH/2 4 o(NH/2) N — 400

Observe that

:Z|x,-—xj|2:2(2—2x,~xj):2N2—2
i7j

i

N2
ZXI < 2N?,

i=1

any configuration with 0 center of mass (vanishing dipole) attains the
maximum E_(N) = 2N2.



Upper bounds for 0 < s < 2

Rakhmanov-Saff-Zhou 94 (area regular partition)
Fore>0
21—5 s

1
N? — ——— (1 +€)N1Hs/2)
2—s (2\/271’)5( )

E(N) <

for N > Np(e, s).
Alishahi-Zamani 15 (spherical ensemble)

2l-s r (]_ _ E)
N2 _ 2 N1+5/2
2—5s 25

Exy [Es(Xn)] <

for N > 2.



Elliptic polynomials (SU(2) or Kostlan-Shub-Smale)

We want to study the random points in the sphere associated with
roots of random polynomials

jé (IJV> ajz/

via the stereographic projection, where a; are normal (complex)
random i.i.d.

From Armentano-Beltrdn-Shub 11



The probability distribution corresponds to the classical unitarily
invariant Hermitian structure in the space of homogeneous
polynomials. Armentano-Beltran-Shub (11)
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The probability distribution corresponds to the classical unitarily
invariant Hermitian structure in the space of homogeneous
polynomials. Armentano-Beltran-Shub (11)

1 N 1
IEX,\,[Ek)g(XN)] = (2 — log 2) N? — > log N — <2 — log 2> N.

Considering a more general framework of holomorphic sections on
Riemann surfaces. Zelditch-Zhong (08), Feng-Zelditch (13)

1-s

2
Exy [Es(Xn)] = 5 N?4C(s)N*5/24 O(NA+9)/2(1og NY1=5/2) | N — +o0

— S

No explicit value for C(s) and cannot recover the logarithmic case.
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Our results (M. and Victor de la Torre (21))

Consider f(z) = ZJ'N:o \/ (IJV) ajz/ as a Gaussian field. Computing the
joint intensities of the zero sets by using Hammersley's formulas for
GAFs

o If xi,...,xy € S? are N points drawn as the zeros of elliptic
polynomials Xy = {x1,...,xn}
2l-s C(s—2
Ex,[Es(Xn)] = N2+C(s)N”s/Z—FMN5/2+o(N5/2), N — 400

2—s 16

where



— P (s)
<4ﬂ-)s/2

 T(1-s/2)
28

— (2m —s
— —C(s)




(V32 (s)
(4m)s/?

 T(1-s/2)
—

ro— 2v2n)
— —C(s)

I L
-2 -1 0 1 2

Exu[E-2(Xn)] = 287 — 8C(3) 1 + o(N1), N = +oo



e By using the expression of Ex, [Es(Xn)] for —4 < s < —2 we get
that for the zeros of elliptic polynomials

Ex, [wee(Xn, s)] = O(N~5/2),

for 1 < s < 3 and no they are not QMC in expectation for H® if s > 3.



Thank you!



