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Quadrature rules

Let Sd = {x ∈ Rd+1 : |x | = 1}

We want to get an approximation of
∫
Sd f dσ from {f (xj)}Nj=1 (and

some weights) with error estimates.

Let PL the space of polynomials in Sd of degree at most L with the
scalar product

〈P,Q〉 =

∫
Sd

PQ dσ,

for P,Q ∈ PL.

Observe that
dimPL = hL,d ∼ Ld
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Fekete points

Let {xLj }
hL
j=1 ⊂ Sd be such that

| det(QL
i (xLj ))i ,j |

is maximal where QL
1 , . . . ,Q

L
hL

is an ON basis of PL.

These sets of points are called Fekete (or extremal fundamental
systems).
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Rob Womersley web http://web.maths.unsw.edu.au/ rsw/Sphere/ 529 Fekete points



For xL1 , . . . , x
L
hL
∈ Sd Fekete points define

`Li (x) =

det

Q1(xL1 ) · · · Q1(x) · · · Q1(xLhL)
...

...
...

QhL(xL1 ) · · · QhL(x) · · · QhL(xLhL)


det(Qk(xLj ))k,j

the Lagrange polynomials.

Clearly
`Li (xLj ) = δij , |`Li (x)| ≤ 1.
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For Q ∈ PL

Q =

hL∑
j=1

Q(xLj )`Lj

and

∫
Sd

Q dσ =

hL∑
j=1

Q(xLj )

∫
Sd
`Lj dσ =

hL∑
j=1

Q(xLj )wL
j

where wL
j =

∫
Sd `

L
j dσ are the integration weights.



Theorem (M.-Ortega Cerdà 08) Fekete points are asymptotically
uniformly distributed:

• for every f ∈ C(Sd)

1

hL

hL∑
j=1

f (xLj ) −→
∫
Sd

f dσ as L→ +∞.

or equivalently

• the (L∞) spherical cap discrepancy

D∞({xLj }
hL
j=1) = sup

C⊂Sd

∣∣∣∣∣#({xLj }
hL
j=1 ∩ C )

hL
− σ(C )

∣∣∣∣∣
satisfies

lim
L→∞

D∞({xLj }
hL
j=1) = 0.
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Sobolev spaces

For ` ≥ 0, H` is the space of the spherical harmonics of degree `

−∆Y = `(`+ d − 1)Y , Y ∈ H`.

Then L2(Sd) =
⊕

`≥0H` and for f ∈ L2(Sd) the Fourier expansion is

f =
∑
`,k

f`,kY`,k , f`,k = 〈f ,Y`,k〉 =

∫
Sd

f Y`,k dσ,

where {Y`,k}dimH`
k=1 is an ON basis of H`. Given s ≥ 0

Hs(Sd) =

{
f ∈ L2(Sd) :

+∞∑
`=0

dimH`∑
k=1

(1 + `2)s |f`,k |2 < +∞

}
with the norm

‖f ‖Hs(Sd ) =

(
+∞∑
`=0

dimH`∑
k=1

(1 + `2)s |f`,k |2
)1/2

.

Hs(Sd) is continuously embedded in Ck(Sd) if s > k + d/2.
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From Lu-Wang 21 (Gröchenig 20) and previous results from
M.-Ortega Cerdà 08, we get the following:

For any ε > 0, let x1, . . . , xN ∈ Sd be a set of N = hb(1+ε)Lc ∼ Ld

Fekete points for Pb(1+ε)Lc and let w1, . . . ,wN be the corresponding
weights. Then for s > d/2

sup
‖f ‖Hs≤1

∣∣∣∣∣∣
∫
Sd

f dσ −
N∑
j=1

f (xj)wj

∣∣∣∣∣∣ . N−s/d .

By Brauchart-Hesse 07 this bound is optimal (see also
Brandolini-Choirat-Colzani-Gigante-Seri-Travaglini 14).
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Equal weights (Chebyshev quadrature)

Given XN = {x1, . . . , xN} ⊂ Sd and s > d/2

N−s/d . sup
‖f ‖Hs≤1

∣∣∣∣∣∣
∫
Sd

f dσ − 1

N

N∑
j=1

f (xj)

∣∣∣∣∣∣ = wce(XN , s).

It can be shown that if wce(XN , s) ∼ N−s/d for some s > d/2 and all
N (i.e. (XN) is a QMC design for Hs) then wce(XN , s

′) ∼ N−s
′/d for

any s ≥ s ′ > d/2.

Brauchart-Saff-Sloan-Womersley 14

Then it is natural to ask for the larger s such that (XN) is a QMC
design for Hs (strength).
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• Spherical t-designs, with N ∼ td , form a QMC design for Hs for all
s > d/2.

• For d
2 < s < d

2 + 1

wce(XN , s)2 = Cs,d −
1

N2

∑
i ,j

|xi − xj |2s−d .

asymptotic estimates of the maximal Riesz energy (Wagner 92) imply
that energy maximizers form a sequence of QMC designs for Hs (By
Stolarsky’s formula wce(XN ,

d+1
2 ) ≡ D2(XN) ≤ D∞(XN)).

• Numerical results for the strength in S2:
Fekete points 3/2
Coulomb energy minimizers 2
Logarithmic energy minimizers 3

• Random configurations (in expectation):
Uniform and independent points are not QMC for any s > d/2
Jittered sampling points are QMC if d

2 < s < d
2 + 1

Spherical ensemble: Hirao 18, Berman 19 (concentration)
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Extremal energies in S2

Define for s < 2 and x1, . . . , xN ∈ S2

Es(x) =
∑
i 6=j

1

|xi − xj |s
and Elog(x) =

∑
i 6=j

log
1

|xi − xj |
.

Recall the conjecture about the extremal energy
(Borodachov-Hardin-Saff 19)

Es(N) =
21−s

2− s
N2 +

(
√

3/2)s/2ζΛ2(s)

(4π)s/2
N1+s/2 + o(N1+s/2), N → +∞

Observe that

E−2(x) =
∑
i ,j

|xi − xj |2 =
∑
i ,j

(2− 2xi · xj) = 2N2 − 2

∣∣∣∣∣
N∑
i=1

xi

∣∣∣∣∣
2

≤ 2N2,

any configuration with 0 center of mass (vanishing dipole) attains the
maximum E−2(N) = 2N2.



Upper bounds for 0 < s < 2

Rakhmanov-Saff-Zhou 94 (area regular partition)
For ε > 0

Es(N) ≤ 21−s

2− s
N2 − 1

(2
√

2π)s
(1 + ε)N1+s/2,

for N ≥ N0(ε, s).
Alishahi-Zamani 15 (spherical ensemble)

EXN
[Es(XN)] ≤ 21−s

2− s
N2 −

Γ
(
1− s

2

)
2s

N1+s/2

for N ≥ 2.



Elliptic polynomials (SU(2) or Kostlan-Shub-Smale)

We want to study the random points in the sphere associated with
roots of random polynomials

N∑
j=0

√(
N

j

)
ajz

j

via the stereographic projection, where aj are normal (complex)
random i.i.d.

From Armentano-Beltrán-Shub 11



The probability distribution corresponds to the classical unitarily
invariant Hermitian structure in the space of homogeneous
polynomials. Armentano-Beltrán-Shub (11)

EXN
[Elog(XN)] =

(
1

2
− log 2

)
N2 − N

2
logN −

(
1

2
− log 2

)
N.

Considering a more general framework of holomorphic sections on
Riemann surfaces. Zelditch-Zhong (08), Feng-Zelditch (13)

EXN
[Es(XN)] =

21−s

2− s
N2+C (s)N1+s/2+O(N(1+s)/2(logN)1−s/2), N → +∞

No explicit value for C (s) and cannot recover the logarithmic case.
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Our results (M. and V́ıctor de la Torre (21))

Consider f (z) =
∑N

j=0

√(N
j

)
ajz

j as a Gaussian field. Computing the

joint intensities of the zero sets by using Hammersley’s formulas for
GAFs

• If x1, . . . , xN ∈ S2 are N points drawn as the zeros of elliptic
polynomials XN = {x1, . . . , xN}

EXN
[Es(XN)] =

21−s

2− s
N2+C (s)N1+s/2+

sC (s − 2)

16
Ns/2+o(Ns/2), N → +∞

where

C (s) =
2

2s+1

(
1 +

s

2

)
Γ
(

1− s

2

)
ζ
(

1− s

2

)
.
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EXN
[E−2(XN)] = 2N2 − 8ζ(3)

1

N
+ o(N−1), N → +∞
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• By using the expression of EXN
[Es(XN)] for −4 < s ≤ −2 we get

that for the zeros of elliptic polynomials

EXN
[wce(XN , s)] = O(N−s/2),

for 1 < s < 3 and no they are not QMC in expectation for Hs if s > 3.



Thank you!


