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a) Pick a large integer, say, n = 1000000. Flip a fair die n? times. @
Fill an n x n matrix with the outcomes. How likely is this matrix to be
invertible?
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b) And what if now we do not roll the same die every time, but rather use
different dice to determine different entries?
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Preliminaries and history
Notation

R" — euclidean n-dimensional space with standard basis ey, ..., en;

B3 — euclidean unit ball in R";

S"~! — unit sphere in R"™;
x| = /xZ+ ...+ x5

@ The Hilbert-Schmidt norm of a matrix A is ||A||ys = Zijal?j;

@ Singular values of A are the axi of the ellipsoid ABj, denoted
o1(A) > ... > on(A);

@ The operator norm ||A|| = sup,egn—1 |Ax| = o1(A);
@ The smallest singular value on(A) = inf, cgn—1 |Ax|;

~@ A random variable £ is anti-concentrated if
sup,crfllé-2zI<1)<belo1).
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Preliminaries and history

Notation / Preliminaries

Recall: there exists a Euclidean epsilon-net N
on the unit sphere of cardinality < @3/)"
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Preliminaries and history
Main question

Question: how likely is a random n x n matrix A to be invertible?

0
6'“U)<\$ .

A harder question: how likely is the smallest singular value
on(A) = inf,cgn—1]Ax| to be bigger than _?
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Preliminaries and history
History

A'is an n x n Gaussian, with i.i.d. entries a;; ~ N(0,1)

1
on(A) ~ NG

Furthermore, for every € € (0,1),

P(O’() f)<C6

(Edelman, Szarek independently in 1990s)
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Preliminaries and history
History

A is n X n matrix with i.i.d. Bernoulli £1 entries

Conjecture (Erdos) 1950s: P(on(A) =0) = Cn?.27"
(when a pair of columns or rows coincide, and rarely elsewhere)

@ Kolmos 60s: P(on(A)=0)=o0(1);

@ Khan, Kolmos, Szemeredi 1995: P(cn(A) =0) < 0.99";
@ Tao, Vu 2006, 2007: P(on(A) =0) <0.75";

Bourgain, Vu, Wood, 2010: P(on(A) =0) < \/57";

e Tikhomirov, 2019: P(on(A) =0) < (0.5+0(1))"! EOV?
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Preliminaries and history
History

A random variable £ is sub-Gaussian if for all t > 0,

P(lg] > t) < e K.

Ais n X n, has entries aj;

Rudelson, Vershynin 2008:

P (an(A) < &) < Cete .

Note: this combines the behavior of Gaussian matrices and the Bernoulli 1
matrices.

A'is n X n, has entries aj; uniformly anti-concentrated,

Rebrova, Tikhomirov 2016:
gu "$yan

P (an(A) < &) < Cete .
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Preliminaries and history
History

A'is nx n, has independent UAC entries, IEIHAH%_,S < Kn?,

L, 2018+ ol iyt

Remark

In fact, it is enough to assume for any p > 0,

n

1 n 1
> <E|Ae;|2p) Pk Y (IE|ATe,-|2P) ’ < Kn?.

i= i=

Note: in principle, all entries may have infinite second moment, but distribution
has to depend on n.

v

Bai, Cook, Edelman, Gordon, Guedon, Huang, Koltchinckii, Latala, Litvak,
Lytova, Meckes, Meckes, Mendelson, Pajor, Paouris, Rebrova, Rudelson,
O’Rourke, Szarek, Tao, Tatarko, Tomczak-Jaegermann, Tikhomirov, Van
Handel, Vershynin, Vu, Yaskov, Yin, Youssef,...
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Theorem (L, Tikhomirov, Vershynin 2019+)

Let A be an nx n random matrix with

@ independent entries aj;
° E[|A|[zs < Kn®
@ ajj are UAC, that is sup,cpr P(|aj —z| <1) < b€ (0,1)
Then for every € € (0,1),
n

P (U,,(A) < \}) < Cete &,

where C and c are absolute constants which depend (polynomially) only on K
and b.
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Results

Arbitrary aspect ratio: history

Question: what if Ais an N x n random matrix with N > n?

Litvak, Pajor, Rudelson, Tomczak-Jaegermann, 2005

N>n+ #gn, strong assumptions: P(on(A) < CivV/N) < e @V,

Rudelson, Vershynin, 2009

N> n, ajj i.i.d. sub-Gaussian, Ea; =0, IEa,-zj = 1. Then for any € € (0,1),

P (a”(A) <e(vVN+1- \/E)) < GVt 4 e &N,

| \

Tao, Vu, 2010

Replaced sub-Gaussian with Eaijc.l <1, but N € [n,n+ G]

| A

Vershynin, 2011

Replaced sub-Gaussian with Ea;} < 0o but

P (on(A) < e(vVN+1—+/n)) <6(c) e00.
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Theorem (L. 2018+)

Let N> n>1 be integers. Let A be an N x n random matrix with
@ independent UAC entries aj;
@ i.i.d. rows
o Ea; =0
o Eaj =1.

Then for every € >0,
P (on(A) < e(vN+1—+/n)) < (Celog1/e)V ™" &=,

where C and c are absolute constants which depend (polynomially) only on the
concentration function bounds.

<

Remark: a more general result in fact follows...
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Proposition 1 (L. 2018+) tall case with dependent columns

Suppose A is an N x n random matrix with independent rows, E||A|[%,s < KNn,
N > Cgn, and assume for every x € S" 1,

sup P(|(AT e;,x) —y| <1) < b€ (0,1).
yeR

Then
]EO'n(A) > C\/N.

Proposition 2 (L. 2018+) tall case with low moments

Fix p > 0. Suppose N > C(Sn, A'is an N X n random matrix with independent
UAC entries. Suppose

n

1
= N
> (E\Ae,-|2p) * < KnNe'™ .

i=1

Then

P(on < CVN) < e~ Cmin(p N,

A\
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The net theorem

A naive attempt

Goal: P(on(A) <20) <.

Suppose we find a small finite set A/ C R” with
° H#N < &
o Vx €S" 13y e N |A(x —y)| < © with probability > 1— &.

y

P(on(A) <QO)=P ( inf |Ax| < Q?) <
xesn—1

P( injf\/\Ay| gz@) +&=P(EyeN: |Ax|<20)+ & <
S

- sup P(|Ay| <20) + &
yeEN

So if we know that for each y, P(|Ay| < 2Q0) < Q;i we are done!
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The net theorem
The net result

Theorem (L. 2018+) — Lite version

There exists a deterministic net A" C 3 B3\ 3 BY of cardinality 1000” such that
for any integer N and any N X n random matrix A with independent columns,
with probability at least 1 — e 2", for every x € S"~! there exists y € NV such

that
|A(x — y|< \/]EIIAII%IS

/OOOmfom L‘/Q

’ WHF/
Jﬂ[x-ﬂ\l 2 small

i

g
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The net theorem
Previously known cases

Folklore: A has sub-gaussian independent entries a;;, Eajj = 0, ]Ea,?j = const.

@ Let N be the standard e-net, i.e. such that
S"! CUyen (x+¢B5),
and #N g@—)’).
@ Then we can estimate |A(x —y)| < ||Al]le < C%?

A
@ Recall, for any matrix A: WHAHHS <|A|| < ||Al|Hs-

@ But specifically for sub-gaussian mean zero variance 1 case,

P (IAI > %\/EIIAH%) <e (1)

e Without strong assumptions, (1) is not true.

13/ 33



The net theorem
Previously known cases

Rebrova, Tikhomirov (2016) proved this Theorem assuming i.i.d. entries ajj,
with Eaj; = 0, Ea,?j = const, and N = n. ’

Guedon, Litvak, Tatarko (2018) extended the result of Rebrova and Tikhomirov
in the case of arbitrary n, N, and replaced i.i.d. entries with i.i.d. columns. J

@ Advantage: the Theorem only assumes independence of columns, and no
other structural assumptions!

@ In particular, allowing dependent columns is crucial for the proof of the
arbitrary aspect ratio result.
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One of the ideas of the proof

Randomized rounding (Raghavan-Tompson 1987, Beck 1987, Kannan-Vempala
1997, Srinivasan 1999, Alon-Klartag 2017, Klartag-L 2018+, L 2018+,
Tikhomirov 2019+,...)

Definition

For £ € S™! write each & = (ki +pj) for ki € Z and p; € [0,1). Consider a
vn

random vector 7° € (e//n)Z":

né = %kh with probability 1 — p;
’ \/Lﬁ(kl"i_l), with probability p;.

23/ 42



Proof of the net theorem

Proof — step 1: comparison via Hilbert-Schmidt

o 571 | J100/e)" (Xj+ _(_B"x).
® (]

=1 vn L]
v _ Heeices
< 200"
Jag ® o {)
o53\¥
fyoLsts, bkl

@ Therefore, there is a set A/ such that for all £ € §" 1 we have i’]£ eN,
n
and #N < (@) :

o We have [|€ — 7|00 < 5 and En® =¢;

e Hence, using the fact that E(n — &) =0, we get:

€2|0|2

3 2
Bl —€,0)f < L

(@)
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Proof of the net theorem
Proof — step 1: comparison via Hilbert-Schmidt

Lemma 1 (comparison via Hilbert-Schmidt)

There exists a collection of points F with #F < (%)”71 such that for any
(deterministic) matrix A:R" — RN, for every £ € S"~! there exists an 1 € F
satisfying
€
|A( =)l < —=IIAllns-

Proof.

Recall: |Ax|? = Z,{V:I(ATe;,x)z, where AT e; are the rows of A;

2 AT /.2
By (V), Ey|(n —¢,ATe)2 < cA =l

@ Summing up, we get

N 2
By A — )2 =By 3 (AT e, — )2 < (c’&HAHHS) ;
i=1

If P(find a red ball in a box) > 0.1 then there exists a red ball in a box.

O
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Proof — step 2: parallelepipeds

2 2
P(|Allhs = 10E[|Al[hs) < 0.1.

Thus Lemma 1 implies the Theorem with probability 0.9 rather than 1 — e 5",
Not good:(

Idea of Rebrova and Tikhomirov, 2016: cover with parallelepipeds and not just
cubes! |
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Proof of the net theorem
Proof — step 2: parallelepipeds

Admissible set of parallelepipeds

@ For a=(ai,...,an) € R" with a; > 0, we fix the parallelepiped

= Iy Po ={x€R": |xi| < aj}.

o Fork>1, denote Q. = {a eR": a; €[0,1], H?:l aj > /-c_"}.

o Note: if o € Qx then Py > (0.5/{)_" — hence the covering is not too big.

y

Lemma 2 (comparison via parallelepipeds)

Pick any a € Q. Let A be any N X n matrix. There exists a net F, with
n
#Fa < (%) such that for every & € S"! there exists an 1 € Fo satisfying

[A(n—9)|

IN

Sl
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Proof of the net theorem
Proof — step 3: B, and nets on nets

Key definition: for any matrix A

Bk (A) = min aj|Aej
(A) - Z |Ae 2.
MinlMy V)
s oF F
Gy %alls.

Corollary of Lemma 2

Let A be any N x n matrix. There exists a small enough net F such that for
every £ € S"! there exists an n € F satisfying

|A(n— €)|<7 By(A).

But the net depends on the matrix! Not good:(
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Proof — step 3: B, and nets on nets

Way out: discretize the admissible set Q.

AY

Jl=x i <elopd, <21 TS = fa: 030 Zast]
( negd o Fw cumes

N~

0 Levemr the /468_/)

The “nets on nets” Lemma

There exists a collection F C Q,.» of cardinality 30" such that for any « € Q4
there exists a 8 € F so that for all i =1,...,n we have oz,2 > B,-z.
In particular, for any N X n matrix A, we have

n
Bi(A) > mi 21 Aei |2
o )_gg;;/%l il
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Proof of the net theorem

A separate discussion: on the minimal dispersion
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Proof of the net theorem

Minimal dispersion: definition.

The set of all axis-parallel boxes contained in the unit cube is denoted by Ry,

that is J
Ry = {H/; | i =[a;, b)) C [0,1]}.

i=1

Given a finite set P C [0,1]d, its dispersion is defined as
d(P)=sup{|B| | B€ Ry, BNP =0}.
The minimal dispersion is defined as the function of two variables n and d as

d*(n,d)= inf (P).
pPclo,1d -
|P|=n

Its inverse function is
N(e,d) = min{n € N| d*(n,d) < €}

In other words, N(e, d) is the smallest number of points inside the unit cube
such that each axis-parallel box of volume € contains at least one point of this

collection. |
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Proof of the net theorem
Minimal dispersion: definition.

Theorem (Litvak, Livshyts)

Let d >2 and e € (0,1/2]. Then

4dloglog(8/€) + log(1/€) .

N(e,d) < 12e

Moreover, the random choice of points with respect to the uniform distribution
on the cube gives the result with high probability.

Rote-Tichy'96; Larcher'17; Bukh-Chao'21; Dumitrescu-Jiang'13;
Aistleitner-Hinrichs-Rudolf'17; Blumer-Ehrenfeucht-Hausser-Warmuth'89;
Rudolf'18; Sosnovec'18; Ulrich-Vybiral'18; MacKay'21; Litvak’'20;
Hinrichs-Krieg-Kunsch-Rudolf'20
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Proof of the net theorem
Methods

d-approximation for By(e) — definition

Given 0 < § < e <1 we say that N/ C Ry is a d-approximation for By(e) if for
every B € By(e) there exists By € N such that By C B and

|Bo| > 0.

We define a §-approximation for Bg(a) and gd(e) in a similar way.

Lemma (Rudolf/Litvak)

Let d > 1 and ¢,6 € (0,1). Let A be a §-approximation for By() and let N be
a §-approximation for By(g). Assume both |N| >3 and |N| > 3. Then

3In || 3In ||
5 5

Moreover, the random choice of independent points (with respect to the
uniform distribution on Q) gives the result with probability at least 1 —1/|N]|. |

N(e,d) < and Kl(a7 d) <
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Proof of the net theorem
Methods

Lemma (Livshyts, Litvak) — upgrade on Step 3 w

Let d > 2 be an integer, € € (0,1), and v > 0. Let § = ¢X*7. Then the size of
an optimal (¢!*7)-approximation of Bg(a) equals to

'

d-1
N(Sd—ly’YSd—l)S?dlnd(l::fy) :

where Sy_1 is a regular (d — 1)-dimensional simplex.

Corollary (via shifts)

Let d > 2 be an integer, € € (0,1), and 4 > 0. Let § =7 /4. There exists a
d-approximation N for B(g) of cardinality at most

(1+1/7)%(In(e/e**7))7

7dInd =
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Proof of the net theorem

Back to random matrices...
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Proof of the net theorem

A net for deterministic matrices: combining steps 1-3.

Theorem about deterministic matrices

There exists a deterministic net A/ of cardinality 1000” such that for any
integer N and any N X n deterministic matrix A, for every x € S™! there exists

y €N such that
100
[A(x —y)| < ﬁ\/ Bio(A)-

This reduces the proof of the Theorem to estimating the large deviation of
B (A) when A is a random matrix coming from an appropriate model.
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Proof of the net theorem
Step 4: Large deviation of Bj.

Lemma

Let A be a random matrix with independent columns. Pick any x > 1. Then

P (Bx(4) 2 108]IAl%s ) < (CR) ™"

o Denote Y; = |Aej|. If Bx(A) >10) 7 EY?, then for any collection
a1,...,an € [0,1], either

n n
> afv?>10) EYZ
i=1 i=1

n
Ha; <k "
i=1

. . . . EY?
@ Consider a collection of random variables oe,? = min (1, v ) .
i
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Proof of the net theorem
Step 4: Large deviation of Bj.

o We estimate

P (Bx(4) > 108]|A|1%s ) <

n
] EY?Y 2 2
P D min (1,775 ) Y7 > 10E||All5s | +

1
n
(. EY? _
P (Hmm (1, Y.2, ) < 2n> — P +P,.
i=1 i

)—2n.

(] P1 =0.
@ By Markov's inequality, P> < (Ck
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Proof of the net theorem
Summary: the non-lite version

Theorem (NON-lite)

Fix n € IN. Consider any S C R". Pick any v € (1,+/n), € € (0, ﬁ) k>1,
p>0ands>0.
There exists a (deterministic) net ' C S+ 4eyBj5, with

G
#N S N(57EB£) ) (ley) %% ’ If |0gl‘{/ S .Iyoogo%h
N(S,eB3)-(Crlogr)", if logr > 1,

such that for every N € IN and every random N X n matrix A with independent
columns, with probability at least

3 (ElAeiP)s.

i=1

Here C, Cy, Gy, C3 are absolute constants. «y is the “sparsity” parameter
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The distance theorem

Thanks for your attention!
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