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Question 1

a) Pick a large integer, say, n = 1000000. Flip a fair die n
2 times.

Fill an n ◊ n matrix with the outcomes. How likely is this matrix to be
invertible?

S

WWWWWU

1 2 6 4 2 5
3 1 5 3 3 6
2 3 6 5 1 1
1 3 2 6 2 5
4 3 6 1 4 2
2 3 3 6 4 5

T

XXXXXV

b) And what if now we do not roll the same die every time, but rather use
di�erent dice to determine di�erent entries?

4/ 42



Preliminaries and history Results The net theorem Proof of the net theorem Sketch of the proof of the square case The distance theorem

Notation

Rn – euclidean n-dimensional space with standard basis e1, ...,en;
B

n

2 – euclidean unit ball in Rn;
Sn≠1 – unit sphere in Rn;
|x | =


x2

1 + ... + x2
n ;

The Hilbert-Schmidt norm of a matrix A is ||A||HS =
Òq

i,j a2
ij
;

Singular values of A are the axi of the ellipsoid AB
n

2 , denoted
‡1(A) Ø ... Ø ‡n(A);
The operator norm ||A|| = supxœSn≠1 |Ax | = ‡1(A);
The smallest singular value ‡n(A) = infxœSn≠1 |Ax |;
A random variable › is anti-concentrated if
P(supzœR |› ≠ z| < 1) < b œ [0,1).
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Recall: there exists a Euclidean epsilon-net N 
on the unit sphere of cardinality < (3/  ) .
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Main question

Question: how likely is a random n ◊ n matrix A to be invertible?

A harder question: how likely is the smallest singular value
‡n(A) = infxœSn≠1 |Ax | to be bigger than ?

3/ 33

④
OR

'



Preliminaries and history Results The net theorem Proof of the net theorem Sketch of the proof of the square case The distance theorem

History

A is an n ◊ n Gaussian, with i.i.d. entries aij ≥ N(0,1)

‡n(A) ¥ 1Ô
n

.

Furthermore, for every ‘ œ (0,1),

P

3
‡n(A) Æ ‘Ô

n

4
Æ C‘.

(Edelman, Szareck independently in 1990s)
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History

A is n ◊ n matrix with i.i.d. Bernoulli ±1 entries

Conjecture (Erdos) 1950s: P(‡n(A) = 0) = Cn
2 · 2≠n

(when a pair of columns or rows coincide, and rarely elsewhere)
Kolmos 60s: P(‡n(A) = 0) = o(1);
Khan, Kolmos, Szemeredi 1995: P(‡n(A) = 0) Æ 0.99n;
Tao, Vu 2006, 2007: P(‡n(A) = 0) Æ 0.75n;

Bourgain, Vu, Wood, 2010: P(‡n(A) = 0) Æ
Ô

2≠n;
Tikhomirov, 2019: P(‡n(A) = 0) Æ (0.5 + o(1))n!
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History

A random variable › is sub-Gaussian if for all t > 0,

P(|›| Ø t) Æ e
≠Kt

2
.

A is n ◊ n, has entries aij i.i.d. sub-Gaussian, Eaij = 0, Ea
2
ij = 1

Rudelson, Vershynin 2008:

P

3
‡n(A) Æ ‘Ô

n

4
Æ C‘ + e

≠cn.

Note: this combines the behavior of Gaussian matrices and the Bernoulli ±1
matrices.

A is n ◊ n, has entries aij uniformly anti-concentrated, i.i.d., Eaij = 0, Ea
2
ij = 1

Rebrova, Tikhomirov 2016:

P

3
‡n(A) Æ ‘Ô

n

4
Æ C‘ + e

≠cn.
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History

A is n ◊ n, has independent UAC entries, E||A||2
HS

Æ Kn
2, i.i.d. rows

L, 2018+

P

3
‡n(A) Æ ‘Ô

n

4
Æ C‘ + e

≠cn.

Remark
In fact, it is enough to assume for any p > 0,

nÿ

i=1

1
E|Aei |2p

2 1
p

Æ Kn
2;

nÿ

i=1

1
E|AT

ei |2p

2 1
p

Æ Kn
2.

Note: in principle, all entries may have infinite second moment, but distribution
has to depend on n.

Bai, Cook, Edelman, Gordon, Guedon, Huang, Koltchinckii, Latala, Litvak,
Lytova, Meckes, Meckes, Mendelson, Pajor, Paouris, Rebrova, Rudelson,
O’Rourke, Szarek, Tao, Tatarko, Tomczak-Jaegermann, Tikhomirov, Van
Handel, Vershynin, Vu, Yaskov, Yin, Youssef,...
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Results

Theorem (L, Tikhomirov, Vershynin 2019+)
Let A be an n ◊ n random matrix with

independent entries aij

E||A||2
HS

Æ Kn
2

aij are UAC, that is supzœR P(|aij ≠ z| < 1) < b œ (0,1)
Then for every ‘ œ (0,1),

P

3
‡n(A) <

‘Ô
n

4
Æ C‘ + e

≠cn,

where C and c are absolute constants which depend (polynomially) only on K

and b.
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Arbitrary aspect ratio: history

Question: what if A is an N ◊ n random matrix with N Ø n?

Litvak, Pajor, Rudelson, Tomczak-Jaegermann, 2005

N Ø n + n

C log n
, strong assumptions: P(‡n(A) Æ C1

Ô
N) Æ e

≠C2N .

Rudelson, Vershynin, 2009

N Ø n, aij i.i.d. sub-Gaussian, Eaij = 0, Ea
2
ij = 1. Then for any ‘ œ (0,1),

P

!
‡n(A) Æ ‘(

Ô
N + 1 ≠

Ô
n)

"
Æ C1‘N≠n+1 + e

≠C2N ;

Tao, Vu, 2010

Replaced sub-Gaussian with Ea
C1
ij

Æ 1, but N œ [n,n + C2]

Vershynin, 2011

Replaced sub-Gaussian with Ea
4
ij < Œ but

P

!
‡n(A) Æ ‘(

Ô
N + 1 ≠

Ô
n)

"
Æ ”(‘) æ‘æ0 0.
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Results

Theorem (L. 2018+)
Let N Ø n Ø 1 be integers. Let A be an N ◊ n random matrix with

independent UAC entries aij

i.i.d. rows
Eaij = 0
Ea

2
ij = 1.

Then for every ‘ > 0,

P

!
‡n(A) < ‘(

Ô
N + 1 ≠

Ô
n)

"
Æ (C‘ log1/‘)N≠n+1 + e

≠cN ,

where C and c are absolute constants which depend (polynomially) only on the
concentration function bounds.

Remark: a more general result in fact follows...
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Results

Proposition 1 (L. 2018+) tall case with dependent columns

Suppose A is an N ◊ n random matrix with independent rows, E||A||2
HS

Æ KNn,

N Ø C0n, and assume for every x œ Sn≠1,

sup
yœR

P(|ÈAT
ei ,xÍ ≠ y | Æ 1) Æ b œ (0,1).

Then
E‡n(A) Ø c

Ô
N.

Proposition 2 (L. 2018+) tall case with low moments

Fix p > 0. Suppose N Ø C
Õ
0n, A is an N ◊ n random matrix with independent

UAC entries. Suppose
nÿ

i=1

1
E|Aei |2p

2 1
p

Æ KnNe

c0N

n .

Then
P(‡n Æ C1

Ô
N) Æ e

≠C2 min(p,1)N .
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A naive attempt

Goal: P(‡n(A) Æ 2¸) Æ ˚.

Discretize Sn≠1:
Suppose we find a small finite set N µ Rn with

#N Æ ˝;
’x œ Sn≠1 ÷y œ N : |A(x ≠ y)| Æ ¸ with probability Ø 1 ≠ ˙.

Then we write:

P(‡n(A) Æ ¸) = P

3
inf

xœSn≠1
|Ax | Æ ¸

4
Æ

P

3
inf

yœN
|Ay | Æ 2¸

4
+ ˙ = P (÷y œ N : |Ax | Æ 2¸) + ˙ Æ

˝ · sup
yœN

P(|Ay | Æ 2¸) + ˙.

So if we know that for each y , P(|Ay | Æ 2¸) Æ ˚≠˙
˝ , we are done!
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The net result

Theorem (L. 2018+) – Lite version

There exists a deterministic net N µ 3
2 B

n

2 \ 1
2 B

n

2 of cardinality 1000n such that
for any integer N and any N ◊ n random matrix A with independent columns,
with probability at least 1 ≠ e

≠5n, for every x œ Sn≠1 there exists y œ N such
that

|A(x ≠ y)| Æ 100Ô
n

Ò
E||A||2

HS
.
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Previously known cases

Folklore: A has sub-gaussian independent entries aij , Eaij = 0, Ea
2
ij = const.

Let N be the standard Á-net, i.e. such that

Sn≠1 µ fixœN
!
x + ÁB

n

2
"

,

and #N Æ (3Á)n.

Then we can estimate |A(x ≠ y)| Æ ||A||Á Æ C
||A||HS ÁÔ

n
?

Recall, for any matrix A: 1Ô
n

||A||HS Æ ||A|| Æ ||A||HS .

But specifically for sub-gaussian mean zero variance 1 case,

P

3
||A|| Ø 100Ô

n

Ò
E||A||2

HS

4
Æ e

≠5n. (1)

Without strong assumptions, (1) is not true.
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Previously known cases

Rebrova, Tikhomirov (2016) proved this Theorem assuming i.i.d. entries aij ,
with Eaij = 0, Ea

2
ij = const, and N = n.

Guedon, Litvak, Tatarko (2018) extended the result of Rebrova and Tikhomirov
in the case of arbitrary n,N, and replaced i.i.d. entries with i.i.d. columns.

Advantage: the Theorem only assumes independence of columns, and no
other structural assumptions!
In particular, allowing dependent columns is crucial for the proof of the
arbitrary aspect ratio result.
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One of the ideas of the proof

Randomized rounding (Raghavan-Tompson 1987, Beck 1987, Kannan-Vempala
1997, Srinivasan 1999, Alon-Klartag 2017, Klartag-L 2018+, L 2018+,
Tikhomirov 2019+,...)

Definition

For › œ Sn≠1, write each ›i = ‘Ô
n

(ki + pi ) for ki œ Z and pi œ [0,1). Consider a
random vector ÷› œ (‘/

Ô
n)Zn:

÷›
i

=

I
‘Ô
n

ki , with probability 1 ≠ pi

‘Ô
n

(ki + 1), with probability pi .
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Proof – step 1: comparison via Hilbert-Schmidt

Sn≠1 µ
t(100/‘)n

j=1

1
xj + ‘Ô

n
B

n
Œ

2
.

Therefore, there is a set N such that for all › œ Sn≠1, we have ÷› œ N ,
and #N Æ

! 100
‘

"n;

We have Î› ≠ ÷›ÎŒ Æ ‘Ô
n

and E÷› = ›;

Hence, using the fact that E(÷› ≠ ›) = 0, we get:

E|È÷› ≠ ›,◊Í|2 Æ ‘2|◊|2

n
(¸)
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Proof – step 1: comparison via Hilbert-Schmidt

Lemma 1 (comparison via Hilbert-Schmidt)

There exists a collection of points F with #F Æ ( C

‘ )n≠1 such that for any
(deterministic) matrix A : Rn æ RN , for every › œ Sn≠1 there exists an ÷ œ F
satisfying

|A(÷ ≠ ›)| Æ ‘Ô
n

||A||HS .

Proof.

Recall: |Ax |2 =
q

N

i=1ÈAT
ei ,xÍ2, where A

T
ei are the rows of A;

By (¸), E÷|È÷› ≠ ›,AT
ei Í|2 Æ C

‘2|AT
ei |2

n
;

Summing up, we get

E÷|A(÷› ≠ ›)|2 = E÷

Nÿ

i=1
ÈAT

ei ,÷
› ≠ ›Í2 Æ

3
C

Õ ‘Ô
n

||A||HS

42
;

If P(find a red ball in a box) Ø 0.1 then there exists a red ball in a box.
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Proof – step 2: parallelepipeds

Remark

P(||A||2HS Ø 10E||A||2HS) Æ 0.1.

Thus Lemma 1 implies the Theorem with probability 0.9 rather than 1 ≠ e≠5n.
Not good:(

Idea of Rebrova and Tikhomirov, 2016: cover with parallelepipeds and not just
cubes!

Galyna V. Livshyts An e�cient net and singular value estimates
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Proof – step 2: parallelepipeds

Admissible set of parallelepipeds
For – = (–1, ...,–n) œ Rn with –i > 0, we fix the parallelepiped

P– = {x œ Rn : |xi | Æ –i }.

For Ÿ > 1, denote �Ÿ =
)

– œ Rn : –i œ [0,1],
r

n

i=1 –i > Ÿ≠n
*

.

Note: if – œ �Ÿ then P– Ø (0.5Ÿ)≠n – hence the covering is not too big.

Lemma 2 (comparison via parallelepipeds)
Pick any – œ �Ÿ. Let A be any N ◊ n matrix. There exists a net F– with
#F– Æ

! 100Ÿ
‘

"n such that for every › œ Sn≠1 there exists an ÷ œ F– satisfying

|A(÷ ≠ ›)| Æ ‘Ô
n

ı̂ıÙ
nÿ

i=1
–2

i
|Aei |2.
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Proof – step 3: BŸ and nets on nets

Key definition: for any matrix A

BŸ(A) := min
–i œ[0,1],

r
n

i=1 –i ØŸ≠n

nÿ

i=1
–2

i |Aei |2.

Corollary of Lemma 2
Let A be any N ◊ n matrix. There exists a small enough net F such that for
every › œ Sn≠1 there exists an ÷ œ F satisfying

|A(÷ ≠ ›)| Æ ‘Ô
n


BŸ(A).

But the net depends on the matrix! Not good:(
20/ 33
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Proof – step 3: BŸ and nets on nets

Way out: discretize the admissible set �Ÿ.

The “nets on nets” Lemma
There exists a collection F µ �Ÿ2 of cardinality 30n such that for any – œ �Ÿ

there exists a — œ F so that for all i = 1, ...,n we have –2
i Ø —2

i .
In particular, for any N ◊ n matrix A, we have

BŸ(A) Ø min
—œF

nÿ

i=1
—2

i |Aei |2.

Galyna V. Livshyts An e�cient net and singular value estimates

-

•

•

•

•

•

T3oMagTiE .

.

Aj =

" he gk
•

i

In = { L : hi El 0,13
,
Fifi ? K

- " } The = fa : aizo
,
Efi's I }

(only need a few curses
to cover the ball ! )
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A separate discussion: on the minimal dispersion
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Minimal dispersion: definition.

The set of all axis-parallel boxes contained in the unit cube is denoted by Rd ,
that is

Rd :=

+ d3

i=1
Ii | Ii = [ai ,bi ) ⊂ [0,1]

4
.

Given a finite set P ⊂ [0,1]d , its dispersion is defined as

d(P) = sup{|B| | B ∈ Rd , B ∩ P = ∅}.

The minimal dispersion is defined as the function of two variables n and d as

d∗(n,d) = inf
P⊂[0,1]d

|P|=n

(.P).

Its inverse function is

N(#,d) = min{n ∈ N | d∗(n,d) ≤ #}.

In other words, N(#,d) is the smallest number of points inside the unit cube
such that each axis-parallel box of volume # contains at least one point of this
collection.
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Minimal dispersion: definition.

Theorem (Litvak, Livshyts)
Let d ≥ 2 and # ∈ (0,1/2]. Then

N(#,d) ≤ 12e 4d log log(8/#) + log(1/#)
#

.

Moreover, the random choice of points with respect to the uniform distribution
on the cube gives the result with high probability.

Rote-Tichy’96; Larcher’17; Bukh-Chao’21; Dumitrescu-Jiang’13;
Aistleitner-Hinrichs-Rudolf’17; Blumer-Ehrenfeucht-Hausser-Warmuth’89;
Rudolf’18; Sosnovec’18; Ulrich-Vybiral’18; MacKay’21; Litvak’20;
Hinrichs-Krieg-Kunsch-Rudolf’20
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Methods

δ-approximation for Bd (ε) – definition
Given 0 < δ ≤ ε ≤ 1 we say that N ⊂ Rd is a δ-approximation for Bd (ε) if for
every B ∈ Bd (ε) there exists B0 ∈ N such that B0 ⊂ B and

|B0| ≥ δ.

We define a δ-approximation for B0
d (ε) and 5Bd (ε) in a similar way.

Lemma (Rudolf/Litvak)

Let d ≥ 1 and ε,δ ∈ (0,1). Let N be a δ-approximation for Bd (ε) and let 5N be
a δ-approximation for 5Bd (ε). Assume both |N | ≥ 3 and | 5N | ≥ 3. Then

N(ε,d) ≤ 3 ln |N |
δ

and 5N(ε,d) ≤ 3 ln | 5N |
δ

.

Moreover, the random choice of independent points (with respect to the
uniform distribution on Qd ) gives the result with probability at least 1 − 1/|N |.
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Methods

Lemma (Livshyts, Litvak) – upgrade on Step 3

Let d ≥ 2 be an integer, # ∈ (0,1), and γ > 0. Let δ = #1+γ . Then the size of
an optimal (#1+γ)-approximation of B0

d (ε) equals to

N(Sd−1,−γSd−1) ≤ 7d lnd
$

1 + γ

γ

%d−1
,

where Sd−1 is a regular (d − 1)-dimensional simplex.

Corollary (via shifts)

Let d ≥ 2 be an integer, ε ∈ (0,1), and γ > 0. Let δ = ε1+γ/4. There exists a
δ-approximation N for Bd (ε) of cardinality at most

7d lnd (1 + 1/γ)d (ln(e/ε1+γ))d

ε1+γ
.
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Back to random matrices...
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A net for deterministic matrices: combining steps 1-3.

Theorem about deterministic matrices
There exists a deterministic net N of cardinality 1000n such that for any
integer N and any N ◊n deterministic matrix A, for every x œ Sn≠1 there exists
y œ N such that

|A(x ≠ y)| Æ 100Ô
n


B10(A).

This reduces the proof of the Theorem to estimating the large deviation of
BŸ(A) when A is a random matrix coming from an appropriate model.
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Step 4: Large deviation of BŸ.

Lemma
Let A be a random matrix with independent columns. Pick any Ÿ > 1. Then

P

1
BŸ(A) Ø 10E||A||2HS

2
Æ (CŸ)≠2n.

Proof.

Denote Yi = |Aei |. If BŸ(A) Ø 10
q

n

i=1EY
2
i , then for any collection

–1, ...,–n œ [0,1], either
nÿ

i=1
–2

i Y
2
i Ø 10

nÿ

i=1
EY

2
i ,

or
nŸ

i=1
–i < Ÿ≠n.

Consider a collection of random variables –2
i = min

1
1,

EY
2
i

Y 2
i

2
.
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Step 4: Large deviation of BŸ.

Proof.
We estimate

P

1
BŸ(A) Ø 10E||A||2HS

2
Æ

P

A
nÿ

i=1
min

3
1,

EY
2
i

Y 2
i

4
Y

2
i Ø 10E||A||2HS

B
+

P

A
nŸ

i=1
min

3
1,

EY
2
i

Y 2
i

4
< Ÿ≠2n

B
=: P1 + P2.

P1 = 0.

By Markov’s inequality, P2 Æ (CŸ)≠2n.
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Summary: the non-lite version

Theorem (NON-lite)

Fix n œ IN. Consider any S µ Rn. Pick any “ œ (1,
Ô

n), ‘ œ (0, 1
20“ ), Ÿ > 1,

p > 0 and s > 0.
There exists a (deterministic) net N µ S + 4‘“B

n

2 , with

#N Æ

I
N(S,‘Bn

2 ) · (C1“)
C2n

“0.08 , if logŸ Æ log 2
“0.09 ,

N(S,‘Bn

2 ) · (CŸ logŸ)n, if logŸ Ø log 2
“0.09 ,

such that for every N œ IN and every random N ◊ n matrix A with independent
columns, with probability at least

1 ≠ Ÿ≠2pn

1
1 + 1

sp

2n

,

for every x œ S there exists y œ N such that

|A(x ≠ y)| Æ C3
‘“

Ô
sÔ

n

ı̂ıÙ
nÿ

i=1
(E|Aei |2p)

1
p .

Here C ,C1,C2,C3 are absolute constants. “ is the “sparsity” parameter
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Thanks for your attention!
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