Asymptotics of periodic minimal energy problems

Doug Hardin Vanderbilt University joint with E. Saff, B. Simanek, and Y. Su

Energy notation

Let A be compact set in \mathbb{R}^n (say $A = \mathbb{S}^{n-1}$)

N-point configuration $\omega_N := \{\mathbf{x}_1, \dots \mathbf{x}_N\} \subset A$

► *f*-energy:

$$E_f(\omega_N) := \sum_{i=1}^N \sum_{j \neq i} f(\mathbf{x}_i - \mathbf{x}_j).$$

- Reisz s-potential: $f_s(\mathbf{x}) := 1/|\mathbf{x}|^s$, s > 0.
- ▶ Log-potential: $f_{log} := log(1/|\mathbf{x}|)$.
- Gaussian: $g_a := e^{-a|x|^2}, \quad a > 0.$
- lacktriangle Minimal Energy Problem: Find describe ω_N^* such that

$$\mathcal{E}_f(A, N) := \min_{\omega_N \subset A} E_f(\omega_N)$$

The circle $A = \mathbb{S}^1$

The configuration of equally spaced points $\omega_N = \{e^{i\frac{2\pi k}{N}}\}_{k=1}^N$ is optimal for a large class of potentials.

▶ For $0 < s \neq 1$,

$$\mathcal{E}_s(\mathbb{S}^1, N) = V_s N^2 + (2\pi)^{-s} 2\zeta(s) N^{1+s} + O(N^{s-1}), \quad (N \to \infty)$$

where $\zeta(s)$ is Riemann zeta function and $V_s = \frac{2^{-s}\Gamma((1-s)/2)}{\sqrt{\pi}\Gamma(1-s/2)}$.

▶ For a complete asymptotic expansion as $N \to \infty$ see [Brauchart, H., Saff, 2011].

Asymptotics of Random configurations

 $\Omega_N = \{X_1, X_2, \dots X_N\}$: N independent samples chosen according to a probability measure μ supported on A.

3000 random points

3000 points near optimal for s = 2

What about the f-energy?

Asymptotics of Random configurations

 $\Omega_N = \{X_1, X_2, \dots X_N\}$: N independent samples chosen according to a probability measure μ supported on A.

$$\mathbb{E}\left[E_s(\Omega_N)\right] = \int \cdots \int \sum_{i \neq j} f(\mathbf{x}_i - \mathbf{x}_j) d\mu(\mathbf{x}_1) \cdots d\mu(\mathbf{x}_N)$$

Asymptotics of Random configurations

 $\Omega_N = \{X_1, X_2, \dots X_N\}$: N independent samples chosen according to a probability measure μ supported on A.

$$\mathbb{E}\left[E_s(\Omega_N)\right] = \int \cdots \int \sum_{i \neq j} f(\mathbf{x}_i - \mathbf{x}_j) d\mu(\mathbf{x}_1) \cdots d\mu(\mathbf{x}_N)$$

$$= \sum_{i \neq j} \int \cdots \int f(\mathbf{x}_i - \mathbf{x}_j) d\mu(\mathbf{x}_1) \cdots d\mu(\mathbf{x}_N)$$

$$= \sum_{i \neq j} \iint f(\mathbf{x}_i - \mathbf{x}_j) d\mu(\mathbf{x}_i) d\mu(\mathbf{x}_j)$$

$$= N(N-1) I_s(\mu)$$

$$I_s(\mu) := \iint f(\mathbf{x}_i - \mathbf{x}_j) d\mu(\mathbf{x}) d\mu(\mathbf{y}) = \mathbb{E}\left[E_f(\Omega_2)\right].$$

Energy asymptotics for s < d and $s = \log$.

Riesz s-equilibrium measure: $I_s(\mu_s) = \min_{\mu \in \mathcal{P}(A)} I_s(\mu)$

Theorem (Polya, Szego, Fekete, Frostman; cf. Landkof)

Let $A \subset \mathbf{R}^p$ be compact, $s < d := \dim_{\mathcal{H}}(A)$. Then

$$\mathcal{E}_s(A, N) = I_s(\mu_s)N^2 + o(N^2), \qquad N \to \infty$$

and minimal s-energy configurations $\omega_{\mathit{N}}^* = \omega_{\mathit{N}}^*(\mathit{A}, \mathit{s})$ satisfy

$$u(\omega_N^*) := \frac{1}{N} \sum_{\mathsf{x} \in \omega_N^*} \delta_\mathsf{x} \overset{*}{ o} \mu_\mathsf{s} \quad \mathsf{as} \quad \mathsf{N} o \infty.$$

Recall: If 0 < s < d and Ω_N consists of N independent samples of $X \sim \mu_{\rm S}$ then

$$\mathbb{E}\left[E_s(\Omega_N)\right] = I_s(\mu_s)N(N-1).$$

Energy asymptotics for s < d and $s = \log$.

Riesz s-equilibrium measure: $I_s(\mu_s) = \min_{\mu \in \mathcal{P}(A)} I_s(\mu)$

Theorem (Polya, Szego, Fekete, Frostman; cf. Landkof)

Let $A \subset \mathbf{R}^p$ be compact, $s < d := \dim_{\mathcal{H}}(A)$. Then

$$\mathcal{E}_s(A, N) = I_s(\mu_s)N^2 + o(N^2), \qquad N \to \infty$$

and minimal s-energy configurations $\omega_{\mathit{N}}^* = \omega_{\mathit{N}}^*(\mathit{A}, \mathit{s})$ satisfy

$$u(\omega_{\mathsf{N}}^*) := \frac{1}{\mathsf{N}} \sum_{\mathsf{x} \in \omega_{\mathsf{N}}^*} \delta_{\mathsf{x}} \stackrel{*}{ o} \mu_{\mathsf{s}} \quad \mathsf{as} \quad \mathsf{N} o \infty.$$

Conjecture: If 0 < s < d, there exists a constant $C_{s,d}$ such that

$$\mathcal{E}_{s}(A, N) = I_{s}(\mu_{s})N^{2} + C_{s,d}N^{1+s/d} + o(N^{1+s/d}), \qquad N \to \infty.$$

Energy asymptotics for $s \geq d$.

A is a d-rectifiable set if A is the image of a bounded set in \mathbf{R}^d under a Lipschitz mapping.

Theorem (H. & Saff, 2005; Borodachov, H. & Saff 2007)

Let A be a compact d-rectifiable set with d-dimensional Hausdorff measure $\mathcal{H}_d(A) > 0$ and suppose $s \ge d$.

• Optimal s-energy configurations ω_N^* for A satisfy

$$\nu(\omega_N^*) \stackrel{*}{\to} (\mathcal{H}_d(A))^{-1} \mathcal{H}_d|_A.$$

▶ If s > d, there exists a constant $C_{s,d}$ (independent of A) such that as $N \to \infty$,

$$\mathcal{E}_s(A,N) = C_{s,d}[\mathcal{H}_d(A)]^{-s/d}N^{1+s/d} + o(N^{1+s/d}),$$

 \triangleright if A is also contained in a C^1 d-dimensional manifold then

$$\mathcal{E}_d(A, N) = (\mathcal{H}_d(\mathcal{B}_d)/\mathcal{H}_d(A))N^2 \log N + o(N^2 \log N).$$

N = 4000 points

Λ periodic energy

- ▶ (Bravais) lattice $\Lambda = A\mathbf{Z}^d$ for some $A \in GL_d(\mathbf{R})$.
- ▶ If $f: \mathbf{R}^d \to \mathbf{R}$ decays sufficiently rapidly as $|x| \to \infty$, we consider the Λ periodic potential

$$F_{\Lambda}(x) := \sum_{v \in \Lambda} f(x+v) = \sum_{v \in \Lambda} f(x-v)$$

- ▶ $F_{\Lambda}(x y)$ equals energy required to place a unit charge at location $x \in \mathbf{R}^d$ in presence of unit charges at $y + \Lambda = \{y + v : v \in \Lambda\}$.
- ▶ F is Λ-periodic, that is, F(x + v) = F(x) for v ∈ Λ.
- $\qquad \mathcal{E}_F(\mathbf{R}^d, N) = \mathcal{E}_F(\Omega_{\Lambda}, N).$

▶ For a lattice $\Lambda \subset \mathbf{R}^d$, s > d, and $\omega_N \subset \Omega_\Lambda$ consider

$$E_{s,\Lambda}(\omega_N) := \sum_{x \neq y \in \omega_N} \sum_{v \in \Lambda} \frac{1}{|x - y + v|^s} = \sum_{x \neq y \in \omega_N} \zeta_{\Lambda}(s; x - y),$$

$$\zeta_{\Lambda}(s;x) := \sum_{s \in \Lambda} \frac{1}{|x+v|^s}, \qquad (s > d, x \in \mathbf{R}^d). \tag{1}$$

▶ For a lattice $\Lambda \subset \mathbf{R}^d$, s > d, and $\omega_N \subset \Omega_\Lambda$ consider

$$E_{s,\Lambda}(\omega_N) := \sum_{x \neq y \in \omega_N} \sum_{v \in \Lambda} \frac{1}{|x - y + v|^s} = \sum_{x \neq y \in \omega_N} \zeta_{\Lambda}(s; x - y),$$

$$\zeta_{\Lambda}(s;x) := \sum_{s \in \Lambda} \frac{1}{|x+v|^s}, \qquad (s > d, x \in \mathbb{R}^d). \tag{1}$$

▶ For a lattice $\Lambda \subset \mathbf{R}^d$, s > d, and $\omega_N \subset \Omega_\Lambda$ consider

$$E_{s,\Lambda}(\omega_N) := \sum_{x \neq y \in \omega_N} \sum_{v \in \Lambda} \frac{1}{|x - y + v|^s} = \sum_{x \neq y \in \omega_N} \zeta_{\Lambda}(s; x - y),$$

$$\zeta_{\Lambda}(s;x) := \sum_{v \in \Lambda} \frac{1}{|x+v|^s}, \qquad (s > d, x \in \mathbf{R}^d). \tag{1}$$

▶ For a lattice $\Lambda \subset \mathbf{R}^d$, s > d, and $\omega_N \subset \Omega_\Lambda$ consider

$$E_{s,\Lambda}(\omega_N) := \sum_{x \neq y \in \omega_N} \sum_{v \in \Lambda} \frac{1}{|x - y + v|^s} = \sum_{x \neq y \in \omega_N} \zeta_{\Lambda}(s; x - y),$$

where

$$\zeta_{\Lambda}(s;x) := \sum_{v \in \Lambda} \frac{1}{|x+v|^s}, \qquad (s > d, x \in \mathbf{R}^d). \tag{1}$$

Theorem (H., Saff, Simanek, 2015)

Let Λ be a lattice in \mathbb{R}^d with co-volume $|\Lambda| > 0$ and s > d. Then

$$\lim_{N\to\infty} \frac{\mathcal{E}_{s,\Lambda}(N)}{N^{1+s/d}} = \lim_{N\to\infty} \frac{\mathcal{E}_{s}(\Omega_{\Lambda},N)}{N^{1+s/d}} = C_{s,d}|\Lambda|^{-s/d}, \qquad s>d, \quad (2)$$

$$\lim_{N \to \infty} \frac{\mathcal{E}_{d,\Lambda}(N)}{N^2 \log N} = \lim_{N \to \infty} \frac{\mathcal{E}_d(\Omega_{\Lambda}, N)}{N^2 \log N} = \frac{2\pi^{d/2}}{d\Gamma(\frac{d}{2})} |\Lambda|^{-1}.$$
 (3)

For s > d, the **periodic Riesz** s-potential is

$$F_{\Lambda,s}(x) := \sum_{v \in \Lambda} \frac{1}{|x - v|^s}, \qquad s > d, x \in \mathbf{R}^d,$$

and we write

$$\mathcal{E}_{\Lambda,s}(N) := \mathcal{E}_{F_{\Lambda,s}}(\Omega_{\Lambda}, N).$$

 $\zeta_{\Lambda}(s;x) := F_{\Lambda,s}(x)$ is called the **Epstein-Hurwitz zeta function** for Λ .

Theorem (HSS, 2015)

Let Λ be a lattice in \mathbf{R}^d with co-volume $|\Lambda| > 0$. For s > d, we have

$$\lim_{N\to\infty}\frac{\mathcal{E}_{s,\Lambda}(N)}{N^{1+s/d}}=\lim_{N\to\infty}\frac{\mathcal{E}_{s}(\Omega_{\Lambda};N)}{N^{1+s/d}}=C_{s,d}|\Lambda|^{-s/d}, \qquad s>d,$$

where $C_{s,d}$ is the same as in BHS Theorem.

The constant $C_{s,d}$ reflects the 'local' structure of optimal s-energy configurations.

- $C_{s,1} = 2\zeta(s)$ (MMRS, (2005))
- ▶ Conjecture (Kuiljaars and Saff, 1998): $C_{s,2} = \zeta_{\Lambda_2}(s)$ for s>2 where Λ_2 denotes the equilateral triangular lattice and, for a d-dimensional lattice Λ ,

$$\zeta_{\Lambda}(s) := \sum_{0 \neq \nu \in \Lambda} |\nu|^{-s} \qquad (s > d).$$

Scaled lattice configurations restricted to a fundamental domain gives:

$$C_{s,d} \le \zeta_{\Lambda}(s)|\Lambda|^{-s/d}, \qquad (s>d).$$

Theta functions: Periodizing Gaussians

Periodizing $g_a(x-y)=e^{-a|x-y|^2}$, a>0, leads to:

$$\Theta_{\Lambda}(a;x) := \sum_{v \in \Lambda} e^{-a|x+v|^2}.$$

▶ If a configuration ω_N is optimal for $\Theta_{\Lambda}(a; \cdot)$ for all a > 0, then ω_N is Λ -periodic **universally optimal** N-point configuration.

Periodizing long range potentials

- ▶ For $s \le d$, the sum $\sum_{v \in \Lambda} \frac{1}{|x-v|^s}$ is infinite for all $x \in \mathbf{R}^d$.
- **convergence factors**: a parametrized family of functions $g_a: \mathbf{R}^d \to [0,\infty)$ such that
 - (a) for a>0, $f_s(x)g_a(x)$ has sufficient decay as $|x|\to\infty$ so that

$$F_{s,a,\Lambda}(x) := \sum_{v \in \Lambda} f_s(x+v)g_a(x+v)$$

converges to a finite value for all $x \notin \Lambda$, and

- (b) $\lim_{a\to 0^+} g_a(x) = 1$ for all $x \in \mathbf{R}^d \setminus \{0\}$.
- ▶ The family of Gaussians $g_a(x) = e^{-a|x|^2}$ is a convergence factor for Riesz potentials. We show that one may choose C_a such that for 0 < s < d

$$F_{s,\Lambda}(x) = \lim_{a \to 0^+} (F_{s,a,\Lambda}(x) - C_a).$$

Main Result

Theorem (H., Saff, Simanek, Su, 2017)

Let Λ be a lattice in \mathbf{R}^d with co-volume $|\Lambda|=1$. Then, as $N\to\infty$,

$$\mathcal{E}_{s,\Lambda}(N) = \frac{2\pi^{\frac{d}{2}}}{\Gamma(\frac{s}{2})(d-s)}N^2 + C_{s,d}N^{1+\frac{s}{d}} + o(N^{1+\frac{s}{d}}), \qquad 0 < s < d,$$

$$\mathcal{E}_{\log,\Lambda}(N) = \frac{2\pi^{\frac{d}{2}}}{d}N(N-1) - \frac{2}{d}N\log N + \left(C_{\log,d} - 2\zeta_{\Lambda}'(0)\right)N + o(N).$$

where $C_{\log,d}$ and $C_{s,d}$ are constants independent of Λ .

Remark: Petrache and Serfaty (2017) show the existence of related energy limits for $d-2 \le s < d$ in the context of energy minimizing configurations in the presence of a confining external field.

Universal optimality conjecture for dimensions d = 2, 4, 8, 24

- In each of the dimensions d=2,4,8,24, there are special lattices Λ_d , (namely, A_2 , D_4 , E_8 , Leech lattice) that are conjectured by Cohn and Kumar (2007) to be 'universally optimal'; i.e., optimal for energy minimization problems with potentials F that are periodizations of potentials of the form $f(|x-y|^2)$ for 'completely monotone' f with sufficient decay. If true, then $C_{s,d}=\zeta_{\Lambda_d}(s)$ in these dimensions for s>0 and $s\neq d$.
- ► Cohn, Kumar, Miller, Radchenko, Viazovska, 2020: *E*₈ and Leech lattice are universally optimal.
- ▶ Optimality for Gaussian potentials $g_a(x y) = e^{-a|x y|^2}$ (i.e., Theta functions) implies universal optimality.

Optimal N point configurations for Λ_2

Conjecture

Let $\Lambda' \subset \Lambda_2$ with co-volume $N \geq 3$ (must be of form $m^2 + mn + n^2$ for $m, n \in \mathbf{Z}$). Then $\omega_N = \Lambda_2 \cap \Omega_{\Lambda'}$ is the unique (up to isometry) universally optimal N-point for appropriate Λ' periodized potentials.

Optimal N=2,3 point configurations for Λ_2

Y. Su has shown universal optimality for N=3 and N=2.

Optimal N=2,3 point configurations for Λ_2

Y. Su has shown universal optimality for N=3 and N=2.

- S. Borodachov, D. Hardin, and E.B. Saff,
 Discrete Energy on Rectifiable Sets,
 Springer Monographs in Mathematics, ISBN
 978-0-387-84807-5, Springer Nature New York, 2019.
- D.P. Hardin, E.B. Saff and B. Simanek, **Periodic discrete** energy for long-range potentials, Journal of Mathematical Physics **55**, (2014) 123509
- Hardin, D; Saff, E. B.; Simanek, B; Su, Y; Next Order Energy Asymptotics for Riesz Potentials on Flat Tori. Int. Math. Res. Not., 2017.
- H. Cohn, A. Kumar, S. D. Miller, D. Radchenko, M. Viazovska,

Universal optimality of the E_8 and Leech lattices and interpolation formulas, preprint, 2020