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Lattice rules and periodic functions




Multivariate numerical integration

Approximate the integral of an s-variate function f : [0,1]* — R
I1(f) ::/ f(x)dx
[0,1]

over the s-dimensional unit cube by a quasi-Monte Carlo (QMC) rule, i.e.,

/(f-):/[Ol]5 de —Zf Xk QN f {xk} )

with deterministically chosen quadrature nodes {xo,...,xy—1} C [0,1]°.
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I1(f) ::/ f(x)dx
[0,1]

over the s-dimensional unit cube by a quasi-Monte Carlo (QMC) rule, i.e.,

/(f)—/[Ol]s de*Zf"k  Qu(f, adio)

with deterministically chosen quadrature nodes {xq,...,xny_1} C [0, 1]°.

Worst-case error

Let (F, [ - | -) be a Banach space and Qy be a QMC rule with
underlying point-set Py = {xq,...,xny_1} C [0,1]°. The worst-
case error of Qn w.r.t. F is defined as

1N—1
f(x)dx — — f(xx
JOLEE- DN

k=0

en,s(Qn, F) := sup
Il ~<1
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Rank-1 lattice rule

A rank-1 lattice rule is a quasi-Monte Carlo rule with quadrature
node set Py C [0, 1]° of the form

k N
sz{m—Od‘o<k<N}c[o 1P,
where z € 7Z° is called the of the lattice rule.

Figure 1: Fibonacci lattice with N =55 and z = (1,34) (left) and a rank-1
lattice with N = 32 and z = (1,9) constructed by the CBC construction (right)
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Rank-1 lattice node set

The point set of a rank-1 lattice rule is given via

kz mod N
PN—{Z";\‘/’ : k—0,172,...7N—1}

with z € Z° and can be constructed in the following way:
|

1

0.8 [~ -

0.6 [~ -

04| .

0.2 [~ -

0 | | | |
0 02 04 06 08 1

Lattice with N = 32 points and generating vector z = (1,9)
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Good lattice, bad lattice

e Generating vector z € 7Z° influences quality of lattice rule
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Good lattice, bad lattice

e Generating vector z € 7Z° influences quality of lattice rule

FZ'.. .:.o.. .:.... r....o .....O ....'o
(a) well-distributed lattice (b) badly distributed lattice

[llustration of rank-1 lattices with generating vectors z = (1,34) and N = 89
points (left) and z = (1,43) with N = 89 points (right)

e Goal: Find good generating vectors z € Z° such that the obtained
rank-1 lattice rules Qn(:, z) are suited for numerical integration.
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Lattice rule integration error

Consider 1-periodic, continuous functions f
absolutely convergent Fourier series

fF(x)=>_ Ff(h)e™"* with f(h):

heZs

:[0,1]* — R with associated

= / f(x)e 2 hx qx.
(0.1
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Lattice rule integration error

Consider 1-periodic, continuous functions f : [0, 1]° — R with associated
absolutely convergent Fourier series

= " Ay with f(h) = / Fx)e 27 dx.

heZs [07115

The integration error of a lattice rule Qn(-, z) then equals

N—1
Qn(f,z)—I(f Z f li/kz_(:)e%ikh'z/'v Z f Yon(h-z)

0#heZs 0#heZs
with indicator function for the dual lattice {h € Z° | h- z = 0 (mod N)}

_J 1, if m=0(mod N),
ow(m) = { 0, if m= 0 (mod N).

6/35



Function space setting

It is then common to consider function spaces of periodic functions
whose Fourier coefficients f(h) decay sufficiently fast.

The decay of the 7(h) is measured by a decay function r,(h) of the form

1, ifh=0 >
@ h) = i . ' d o h) = [+ hj
r ( ) { ‘h‘a, |fh750 an r ( ) jlj[lr ( J)

with smoothness parameter o > 1.
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In order to overcome the curse of dimensionality, we additionally
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In order to overcome the curse of dimensionality, we additionally
introduce so-called weights v = (7u)uc1:s} Which measure the
importance of (groups of) variables x,, 1= (X;)jeu:

ra(h) := rys_u;p(h) H L
Jj€supp(h)

e Relation between r, ~(h) and mixed partial derivatives ) e Ng
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Function space setting

Define the norm of the Banach space E;' as
Ifllez, := sup |f(h)| ra~(h)
hezs
and for & > 1 and positive weights define the weighted function space

E, = A{f € L*([0,1]°) | |f]len, < oo}.

8 3
= 6
¢
4
—+
24
)
'iil 0,,
0 1 1
2
X
W= m3=20p3=3
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Function space setting

Applying Holder's inequality with p = co and g = 1 to the integration
error (see previous slide) yields

|@n(f, 2) = I(f)]

> F(h) ran(h) rik(h)on(h- 2)

0+£heZs

(:555'“"““”(”)) ( X realP )

0+£hezs

IN
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Function space setting

Applying Holder's inequality with p = co and g = 1 to the integration
error (see previous slide) yields

|@n(f, 2) = I(f)]

S= F(h) raq(h) ik (h)dn(h - 2)

0#£heZs

(sup |f(h),m(h)> ( ) ‘”"(h)’> .
hezs 0+£hezs @Y

= HfHESC‘“,Y :eN.s(QN('vz)sEscf'y)

IN

Theorem (Lattice rule worst-case error)
Let N,s € N, a > 1 and a sequence of positive weights v = (Vu)uc{1:s}

be given. Then the worst-case error ey s,a,~(2) for the rank-1 lattice
rule Qn(-, z) in the space Eg. satisfies

on(h -z
ens,a~(2) = ens(Qn(-, 2), Ey) = Z :V((h))
0£hezs &7
9/35



Quality measure and optimal coefficients




Quality measure T,(N, z)

For o« > 1 we introduce the quality measure

Tu(N,2):= > L% onth-z)

0£he My s Fo(h) 0£heMy Foy (h)
h-z=0 (mod N)

with truncated index set My s = {—(N —1),..., N —1}°.

1 - - N - 40 T T T

Figure 2: Fibonacci lattice with N = 34 and z = (1,21) (left) with the
corresponding set of 0 # h € My s with h-z =0 (mod N) (right)
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Connection with the worst-case error

The difference between ey s o ~(2) and its restriction to My s satisfies:

Lemma (Truncation error)

Let v = (vu)uc{1:s} be a sequence of positive weights and let z € 7°
with gcd(z;, N) =1 for all j=1,...,s. Then, for o > 1, we have that

1
ensan(2) = TalN.2) < o D0 (@)
0AuC{1:s}

11/35



Connection with the worst-case error

The difference between ey s o ~(2) and its restriction to My s satisfies:

Lemma (Truncation error)

Let v = (vu)uc{1:s} be a sequence of positive weights and let z € 7°
with gcd(z;, N) =1 for all j=1,...,s. Then, for o > 1, we have that

1
ensan(2) = TalN.2) < o D0 (@)
0AuC{1:s}

Under the same assumptions we obtain

enonn(z)= Y WB-2) g onh-z) g Onh-2)

0+£heZs raa"/(h) UfhEMN,s ras"/(h) 0£heMy . raa’Y(h)
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Let v = (vu)uc{1:s} be a sequence of positive weights and let z € 7Z°
with gcd(zj, N) =1 forall j=1,...,s. Then, for o > 1, we have that

1
eN,s,av(2) = Ta(N,2) < Ve Z Y (4¢(a)) .
0F#uC{l:s}

Under the same assumptions we obtain

on(h-2) on(h - z) n(h - 2)
en,s,a,v(2) = — Z = Z N 4D
0#hezs fa+(h) 0£he My, s Foy(h) 0£he My Fay(h)

<Y s Y kD)

D#uC{1:s} 0£hEMpy s Fa~(h)
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Connection with the worst-case error

The difference between ey s ~(2) and its restriction to My s satisfies:

Lemma (Truncation error)

Let v = (vu)uc{1:s} be a sequence of positive weights and let z € 7°
with gcd(zj, N) =1 forall j=1,...,s. Then, for o > 1, we have that

1
en,s.a(2) = Ta(N,2) < 7 > (4.
0#uC {1:s}

Under the same assumptions we obtain (using Jensen's inequality)

6/\/(’1'2) _ Z 5/\/(’12) + Z 5/\/(’12)

ens,a~(2) =
0#£hecZs ra,’Y(h) OihGMN,S raﬁy(h) O;ﬁhEMN,S raﬁ(h)

«

S SRECI O LR I S

M ~1/a
D#uC{1:s} 0£heMy ¢ 11

11/35



Optimal coefficients modulo N

For the limiting case @ = 1, we analogously introduce the quality measure

T(N,z) = Z on(h-2)

0£heMy o rlﬁ'Y(h)

as a quality criterion for good rank-1 lattice rules.

IN.Korobov. Number-theoretic methods in approximate analysis. Fizmatigiz, 1963.

N.Korobov. On the computation of optimal coefficients. Dokl. Akad. Nauk., 1982.
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Optimal coefficients modulo N

For the limiting case @ = 1, we analogously introduce the quality measure

5N(h . Z)
T(N,z):= —_—
W2)= 3 =)
;’éhEMN.s
as a quality criterion for good rank-1 lattice rules.
As in Korobov works!, we introduce the concept of optimal coefficients.

Definition (Optimal coefficients modulo /)

For given N € N and positive weights v = (u)uc{1:s}, the components
z1,...,2s of z are called optimal coefficients modulo N if for any 6 > 0
it holds that

T(N,z) < C(~y, )N,

where C(~,0) is a positive constant independent of s and N.

IN.Korobov. Number-theoretic methods in approximate analysis. Fizmatigiz, 1963.

N.Korobov. On the computation of optimal coefficients. Dokl. Akad. Nauk., 1982.
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The componentwise digit-by-digit algorithm




The construction of good rank-1 lattice rules

An exhaustive search for good generating vectors z € {0,1,..., N — 1}
such that the worst-case error ey s o ~(2) for our function space is small,
is infeasible since the search space has size O(N®).

Therefore, different search algorithms were introduced:

2N.Korobov. On the computation of optimal coefficients. Dokl. Akad. Nauk., 1982.
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The construction of good rank-1 lattice rules

An exhaustive search for good generating vectors z € {0,1,..., N — 1}
such that the worst-case error ey s o ~(2) for our function space is small,
is infeasible since the search space has size O(N®).

Therefore, different search algorithms were introduced:

e Korobov (1963) and later Sloan and Reztsov (2002) introduced a
component-by-component (CBC) construction to find good
generating vectors z. (Greedy algorithm with complexity O(s N?)
and search space size reduced to O(s N))

e The introduction of the fast CBC construction by Nuyens and Cools
(2006) reduced the complexity of the algorithm to O(s Nn V).

e We will explore a different construction algorithm which originates
from an article by Korobov? (1982, 3% pages long).

2N.Korobov. On the computation of optimal coefficients. Dokl. Akad. Nauk., 1982.
13/35



For x € (0,1) consider the Fourier series of the function —2 In(sin(7x))
e27rihx
—21In(sin(7x)) =In(4) + > o
hez\{0} Al

The relation to the error expression motivates us to define the quality
function for our componentwise digit-by-digit (CBC-DBD) algorithm.

10 |
-
=
=
)
£ 5|
R
05 % 1
X

Figure 3: Behavior of the function —2In(sinmx) on the interval [0, 1].
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Formulation of the CBC-DBD construction

Definition (Digit-wise quality function)

Let x € N be an odd integer, n,s € N be positive integers, and let

¥ = (7u)uc{1:s} be a sequence of positive weights. For 1 < v < n and
1 < r < s and positive integers zi, ..., z._1, we define the quality
function h, , ~ : Z — R as

hrv () : sz v Z Z %Hl sin? sz/zk)

P#uC{l:r—1}  jeu

m= 1(mod 2)
1
- r In In
mC{er I’Zmu{} 11;[0 sin’ 7rmzj/2k) sin®(mmx/2)

Based on h, , - the component-wise digit-by-digit (CBC-DBD) algorithm
can be formulated as follows.

15/35



Formulation of the CBC-DBD construction

Algorithm 1 Component-wise digit-by-digit construction

Input: Integer n € N, dimension s and positive weights v = (7u)uc1:s}-
Set Z1,n = 1 and 221 =...=Zs1 = 1.
for r =2 to s do
for v=2to ndo
z* = argmin h, , (21 + 2v—12)
ze{0,1}
Zrv = Zryv—1 + 2vlze
end for
end for
Set z=(z,...,2z5) with z, ==z, , for r =1,...,s
Return: Generating vector z = (zy,...,z) for N = 2",
The resulting vector z = (z, ..., z) is the generating vector of a lattice
16/35

rule with N = 2" points in s dimensions.



lllustration of the CBC-DBD algorithm

e The generating vector z is constructed component-by-component,
where each component is build up digit-by-digit.

v=2,...,n

Zip=1 - ziy - 212 z1p=1

2.5 e Zoy o Do 21 =1

Z3.n ez v Zp 731 =1
n
(ﬂf Zr.n vt Zry ottt Zr2 Zrl = 1
L.

Zs,n o Zsy tt Zs2 Zs1 — 1

e The size of the search space is of order O(2ns) = O(sIn N).
e The construction is extensible in the dimension s.

e Naive implementation has time complexity O(s?N In N).
17/35



Error convergence behavior (main result)

Theorem (A.E., P.Kritzer, D.Nuyens, O.Osisiogu)

Let N =2" and (vu)uc{1:s}, With v, = HjEu'yj and ~; > 0, be product
weights. Then the corresponding generating vector z, constructed by
Algorithm 1, satisfies the following estimate:

5}

T(N,z) < % 1;[1 (14 7(In4+2(1+In N)))

+2(1+In N) H (14 ~;(2(1 + 2In N)))
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Theorem (A.E., P.Kritzer, D.Nuyens, O.Osisiogu)

Let N =2" and (vu)uc{1:s}, With v, = HjEu'yj and ~; > 0, be product
weights. Then the corresponding generating vector z, constructed by

Algorithm 1, satisfies the following estimate:

5}

T(N,z) < % 1;[1 (14 7(In4+2(1+In N)))

+2(1+In N) H (14 ~;(2(1 + 2In N)))

Moreover, if the weights (7;):_; satisfy the condition
o)
D7 <%0
j=1
then T(N,z) is bounded independently of the dimension s and zi,..., z

are optimal coefficients modulo N. 18/35



Error convergence behavior (main result)

Theorem (A.E., P.Kritzer, D.Nuyens, O.Osisiogu)

Let N = 2" and denote by z = (z,. .., zs) the generating vector
constructed by Algorithm 1. If the weights v, =[], v satisfy the

J
oo
> %<
j=1

then for any 6 > 0 and each oo > 1 the worst-case error ey s,o,~~(Z)

condition

satisfies

5}

I (@ +7(8¢(@) + C(v, 8)N>°

Jj=1

en,s,a,y(2) < N

with weight sequence v = (v )uc{1:s} and positive constant C(~,0)
independent of s and N.
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Fast implementation of the algorithm




Cost analysis

For the implementation we consider the special case of product weights

Yu = [[je, v for a sequence of positive reals (v;);>1.
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> 1}(“”'”sm(wjvq/zk))(””'”m)
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Cost analysis

For the implementation we consider the special case of product weights
Yu = [[je, v for a sequence of positive reals (v;);>1.

The digit-wise quality function h, , ~(x) then equals
n 2k r—1
1 1
1+’Y‘|n.>(1+7r|n_> .
kZ _1nzz1 2),-1;[1 ( ! 5'n2(7|'m2j/2k) sin?(wmx/2")

A single evaluation of h,, ~(x) requires O(r>__ 2%~1) operations. The

total cost of each inner loop over the v = 2,... nis therefore
( > 2 sz 1): r(2"n—2(2" - 1))) = O(rNinN).
v=2 k=v
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Cost analysis

For the implementation we consider the special case of product weights
Yu = [[je, v for a sequence of positive reals (v;);>1.

The digit-wise quality function h, , ~(x) then equals
n 2k r—1
1 1
1+’Y‘|n.>(1+7r|n_> .
kZ _1nzz1 2),-1;[1 ( ! 5'n2(7|'m2j/2k) sin?(wmx/2")

A single evaluation of h,, ~(x) requires O(r>__ 2%~1) operations. The

total cost of each inner loop over the v = 2,... nis therefore
( > 2 sz 1): r(2"n—2(2" - 1))) = O(rNinN).
v=2 k=v

Thus, a naive implementation of the CBC-DBD algorithm has time
complexity O (s> Nn N).

20/35



Fast implementation

A fast implementation can be obtained by evaluating h,,, ~(x) =

Z2k VZ H <1+%|n sin’ (ﬂmZJ/Qk)><1+%|n 5'"2(77:"X/2V)>

m=1 (mod 2)

in a more efficient manner.
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For 1 <r<sletz,...,z be constructed by Algorithm 1. For
ke {2,...,n} and odd m € {1,...,2% — 1} define the term q(r, k, m) by

r

q(r,k,m)=_H(1+%'“W)'

Jj=1
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Fast implementation

A fast implementation can be obtained by evaluating h,,, ~(x) =

Z2k VZ H <1+%|n sin’ (ﬂmZJ/Qk)><1+%|n 5'"2(77:"X/2V)>

m=1 (mod 2)
in a more efficient manner.

For 1 <r<sletz,...,z be constructed by Algorithm 1. For
ke {2,...,n} and odd m € {1,...,2% — 1} define the term q(r, k, m) by

r

q(r,k,m)=_H(1+%'“W)'

Jj=1

This way, the function h, , ~(x) can be rewritten as

n 2k
1 1
hyy~(x) = _— r—=Lk,m) 1+~ In ———— .
=2 2, dtkm) (1477 o)
a m=1 (mod 2)
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Fast implementation

We can thus compute and store q(r — 1, k, m) for all values of k and m
at cost O(N) and compute g(r, k, m) via the recurrence relation

1
rik,m)=q(r— 1Lk m|1l+~vIn——-——].
a(r, K, m) = g )( ) smz(m/%))

This way, a single evaluation of h, , ~(x) requires only O(>_,_ 2k~1)
operations, each inner loop O (N In N) operations.
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Fast implementation

We can thus compute and store q(r — 1, k, m) for all values of k and m
at cost O(N) and compute g(r, k, m) via the recurrence relation

1
rik,m)=q(r— 1Lk m|1l+~vIn——-——].
a(r, k,m) = o ) (14200 o m)

This way, a single evaluation of h, , ~(x) requires only O(>_,_ 2k~1)
operations, each inner loop O (N In N) operations.
Theorem (Fast implementation)
Let n,s € N and N = 2". For a given positive weight sequence
v = (7j)j=1, a generating vector z = (z1,...,zs) can be computed via
Algorithm 1 using O(s NIn N) operations and requiring O(N) memory.

This algorithm has time complexity O(s NIn N) and does not require the
use of fast Fourier transforms (FFTs)!
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Numerical results




Error convergence behavior

Consider the convergence behavior of ey s o~ (2) for generating vectors
constructed by the CBC-DBD algorithm and the fast CBC algorithm3.

Use product weights sequences v = (yu)uc{1:s} With v = [[;c, v
and consider the worst-case error ey s o~ for o = 2,3, 4.

The generators Z¢pc.dbq are constructed by the CBC-DBD algorithm
with n, s and weights (v;);_; as input.

The generators z.,. are constructed by the fast CBC algorithm for
N = 2" using the error ey s o~ as quality function.

The error values of generators constructed by the standard fast CBC
algorithm are used as a benchmark for our CBC-DBD construction.

3D. Nuyens, R. Cools. Fast component-by-component construction of rank-1 lattice

rules with a non-prime number of points. J. Complexity 22, 4-28, 2006.
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Ho=2Hca=3H a=4

24/35



Computation times

Table 1: Computation times (in seconds) for constructing generating vectors z of lattice rules
with N = 2" points in s dimensions via the CBC-DBD algorithm (bold font) and the standard fast
CBC construction (normal font). Constructed for weights of the form ~, = Hjeu ;. For the fast
CBC construction the smoothness parameter o« = 2 was used.

s =50 s =100 s — 500 s — 1000 s — 2000
—10 0.038 0.075 0.37 0.743 1.485
n 0.061 0.119 0.595 1.184 2.371
b 0.047 0.096 0.476 0.951 1.897
- 0.003 0.185 0.922 1.843 3.685
e 0.068 0.138 0.674 1.339 2.676
= 0.155 0.31 1.547 3.081 6.166
—16 0.165 0.304 1.423 2.845 5.626
n= 0.344 0.678 3.304 6.804 13.624
n— 18 0.586 1.053 4.746 9.497 18.867
1.145 2.203 11.63 23.1 46.184
=20 3.357 6.203 28.935 57.438 114.284
= 6.31 12.757 64.102 128.897 257.454
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Polynomial lattice rules




Walsh series representation

Consider functions f : [0,1]° — R given by their Walsh series

= Y F(k)wale(x) with 7(k) = / £ (x) walx (x) dx
.1

keNg

with walg(x) = [[;_; waly,(x;) and walx(x) = e2mi(Kogi+h1€a+ +ra-184)/b
for base b representations k = kg + k1b + - - - ka_1b? 1 and
x=§&b t+&b72 4 -+ with coefficients ;,& € {0,1,...,b—1}.
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Walsh series representation

Consider functions f : [0,1]° — R given by their Walsh series

= Y F(k)wale(x) with 7(k) = / £ (x) walx (x) dx
.1

keNg

with walg(x) = [[;_; waly,(x;) and walx(x) = e2mi(Kogi+h1€a+ +ra-184)/b
for base b representations k = kg + k1b + - - - ka_1b? 1 and
x=§&b t+&b72 4 -+ with coefficients ;,& € {0,1,...,b—1}.

We introduce a function to measure the decay of the Walsh coefficients:

s
) =[] ra(k) and ro(k) = Vaorp(k) [T o
j=1

j€supp(k)
with 1, (k) = [log,(k)].
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Weighted Walsh space

Define the norm of the Banach space W', as
1Fllwe, = sup |7 (k)| ra(k)
keN;

and for @ > 1 and positive weights define the weighted function space

We, = {f € L2([0,1°) | [|fllwe, < oo}

2K
z
¥
N
27
X
@,
0011 1
8 4 2
X
ms=¢{mB3=21p3=3
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Polynomial lattice rules

Denote by Fp[x] the set of all polynomials over Fy, and define the map
Vm : Fp((x71)) = [0,1) by

oo m
Vim (Z ty X_£> = Z to bt
=1 =1

For n € Ny with base b expansion n = ng + mb+ ---+ n;b, we
associate n with the polynomial n(x) := >"7_, nx x* € Fp[x].
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Polynomial lattice rules

Denote by Fy[x] the set of all polynomials over Fj, and define the map
Vm : Fp((x71)) = [0,1) by

oo m
Vi (Z ) X_£> = Z to bt
(=1 =1

For n € Ny with base b expansion n = ng + mb+ ---+ n;b, we
associate n with the polynomial n(x) := >"7_, nx x* € Fp[x].

Polynomial lattice point set

Let b be prime and choose p € Fp[x] with deg(p) = m, and let
g € Fp[x]. Then the point set P(g, p), defined as the collection
of the b™ points

for n € Fp[x] with deg(n) < m, is called a polynomial lattice.
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Integration error for PLR

0 o o ° .'. o »
** ] ° L4 LR s » » \"J
® o0 © oo ® o 4
L[] o. O. . .o .. ») \'..
.0. oo 0..o: .o .o : ¢~ ¢»
Lt el ] v ’o
® 2 % .%ee [N & '
o® o° : . o. LI ~'~ »)
e ® 0‘. . .. o.o. : » ‘-

Polynomial lattice node sets with 27 points in base b = 2 with irreducible
polynomial f = x” + x> + 1 € IF2[x] and the two generating vectors
g, = (X" +x* 4+ 1,x* + x) (left) and g, = (x> +1,x* + x) (right).
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Integration error for PLR
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® 2 % .%ee [N & '
o® o° : . o. LI ~'~ »)

e ® . ‘. . .. o.o. : » ‘-

Polynomial lattice node sets with 27 points in base b = 2 with irreducible
polynomial f = x” + x> + 1 € IF2[x] and the two generating vectors
g, = (X" +x* 4+ 1,x* + x) (left) and g, = (x> +1,x* + x) (right).

Also here the integration error can be represented in terms of the series
coefficients, that is,

Qun(fiP(g,p)— ()= > f(k)

0#keD(g,p)

with dual net D(g, p) = {k € N§ | trn(k) - g =0 (mod p)}.
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Further strategy

e As for lattice rules, define the quantities

Tg.p)= Y, (ny(k)h  Talgp)i= D (rax(k)™*

0£kcA,(g) 0+£keA,(g)

with index set given by A,(g) ={k € {0,1,...,b6™ —1}* | k € D(g,p)}.
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e As for lattice rules, define the quantities

Tg.p)= Y, (ny(k)h  Talgp)i= D (rax(k)™*

0£kcA,(g) 0+£keA,(g)

with index set given by A,(g) ={k € {0,1,...,b6™ —1}* | k € D(g,p)}.

e Relate the quality measure T(g, p) to the worst-case error expression
for polynomial lattice rules in the space W, .

e Introduce the digit-wise quality function and formulate a
component-by-component digit-by-digit construction algorithm.
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Formulation of the CBC-DBD construction for PLRs

Definition (Digit-wise quality function)

Let g € Fp[x], m,s € N, and let v = (yu)ucqr:s} With 1, = Hjeu"/j be
product weights. For integers w € {1: m}, r € {1 : s}, and
polynomials g1, ..., g—1 € Fp[x] with gcd(gj, x) = 1, we define the
quality function h; . m~ : Fp[x] = R as

X,-[[l <1+7j(1 b) ngb (w (W))J +1)> .

Based on hy , m~ the component-wise digit-by-digit (CBC-DBD)
algorithm for polynomial lattice rules can be formulated as follows.
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Formulation of the CBC-DBD construction for PLRs

Algorithm 2 Component-wise digit-by-digit construction

Input: Integer n € N, dimension s and positive weights v = (7u)uc1:s}-

Setgim=1land g1 =...=gs1 =1

for r =2 to s do
for w =2 to mdo

g* = argmin hnw,m;y(gr‘,wfl + XW_lg)
4SO
8rw = 8r,w—1 + g*Xw_l
end for
end for

Set g = (g1,...,8s) with g, ;== g, m for r=1,... s.

Return: Generating vector g = (g1,...,8s) € (Fu[x])* with deg(g;) < m.

e For ease of computations, we fix b = 2 in the numerical experiments.
32/35



Error convergence behavior (main result)

Theorem (A.E., P.Kritzer, O.Osisiogu, T.Stepaniuk)

Let b be prime, let m,s € N with m > 4, let N = b™, and let (7;)j>1
be positive product weights satisfying

Z 7y < o0.
jz21

Also, denote by g the generating vector obtained by Algorithm 2, run
for the weight sequence ~y = (vj)j>1. Then, for any § > 0 and each
« > 1, the generating vector g satisfies

1 —
eb"’,s,oz,’y" (g) S W (C(’Ya) + @ (77 6) Na&) )
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Worst-case error eys,q,yo(8)

Worst-case error ey,s,q,va(g)

f o
Error convergence in the space W,
102
10°
—10
10 - - o(n—128) ~
- - o(n—172)
- = O(N—25)
10— 14 Ll Lo 11
10° 10° 10*

Number of points N = 27

(a) ¥ = (j)j=y with 75 =1/

1011 —
10°
10—1 L
- O(Nfl)
- - o1
- - O(NT107)
10—7 Lol L
102 10° 10*
Number of points N = 27
(c) ¥ = (7)j-y with 5 = (0.95)

—e— CBC-DBD —=— standard fast CBC

Worst-case error ey,s,q,o(g)

Worst-case error ey,s,q,va(g)

10°

10—

1015

with v, = Hieu vj,s =100, = 1.5,2, 3.

- o4
— - - o(n—1.88)

- . o(n—2-86)

102 10° 10*

Number of points N = 2™

(b) v = ())j=y with v =1/

=
o
|

1012

8

- - o114
- - - OoN—148)
—— - o(n—2:19) |
10? 10° 10*
Number of points N = 2™
(d) v = (%)j=y with ~; = (0.7)

oo

15 a=2H «
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Thank you for your attention!
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