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Sphere packing

What is the densest packing of congruent spheres in Rd?

The answer is known in dimensions 1, 2, 3, 8, and 24

Dimension 3: Kepler conjecture solved by Hales

In dimension 8 and 24 the optimal configurations are the E8 root lattice
and the Leech lattice; optimality proved using the Cohn-Elkies linear
programming bound and Viazovska’s (quasi)modular forms
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Lower bound

Consider a sphere packing in Rd in which there is no room to add another
sphere

Doubling the radii gives a covering of Rd

Since doubling the radius of a sphere multiplies the volume by 2d, the
original sphere packing must have density at least 2−d

Up to subexponential factors this is still the best known lower bound
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The spinless modular bootstrap
The partition functions of certain conformal field theories are of the form

Z(τ) =
∑
∆

d∆χ∆(τ)

where

χ∆(τ) =
e2πiτ∆

η(τ)2c
and Z(−1/τ) = Z(τ)

The values of ∆ appearing in the sum are called scaling dimensions, and
the smallest nonzero scaling dimension is the spectral gap

How large can the the spectral gap be?

The parameter here is c and the variables are

∆0 < ∆1 < ∆2 < . . . and d∆k
∈ N1

where ∆0 = 0 and d0 = 1
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Upper bounds on the spectral gap

Φ∆(τ) = χ∆(τ)− χ∆(−1/τ)

Crossing equation
∑

∆ d∆Φ∆(τ) = 0

Given ∆gap > 0 let ω be a linear functional with

ω(Φ0) > 0 and ω(Φ∆) ≥ 0 whenever ∆ ≥ ∆gap

Applying ω to the crossing equation gives

ω(Φ0) +
∑
∆>0

d∆ω(Φ∆) = 0,

Such ω proves the upper bound ∆1 ≤ ∆gap
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Uncertainty principle

Hartman, Mazáč, and Rastelli formulate this as an uncertainty principle

They write the optimization over ω as an optimization problem over
functions f : R2c → R not identically zero with

f̂ = −f and f(x) ≥ 0 whenever |x| ≥
∆2

gap

2

One direction follows from f(x) := ω(Φ|x|2/2)

This type of uncertainty principle introduced by Bourgain, Clozel, and
Kahane, and recently studied by Cohn and Gonçalves in connection to the
sphere packing problem
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Cohn-Elkies bound

Theorem
Let h : Rd → R be an integrable, continuous, radial function such that ĥ is
integrable, and let r be a positive real number. If

I h(0) = ĥ(0) = 1,

I h(x) ≤ 0 whenever |x| ≥ r, and

I ĥ ≥ 0,

then every sphere packing in Rd has density at most the volume of a
sphere of radius r/2 in Rd

If h is a function satisfying the above hypotheses, then f = ĥ− h satisfies
the hypotheses on the previous slide with c = d/2:

f̂ = −f and f(x) ≥ 0 whenever |x| ≥
∆2

gap

2
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Numerical optimization

Consider f as a function of ∆ = |x|2/2 and write

f(∆) =

2N∑
k=1

αkfk(∆), where fk(∆) = L
(c−1)
2k−1 (4π∆)e−2π∆,

L
(c−1)
2k−1 is the Laguerre polynomial with parameter c− 1 of degree 2k − 1,

so that fk (as a function of x) is an eigenfunction for the Fourier
transform with eigenvalue −1

Checking whether f satisfies the inequality constraint

f(∆) ≥ 0 for ∆ ≥ ∆gap

is a semidefinite program, but this is computationally expensive for large N
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Numerical optimization
Instead of using semidefinite programming, fix ∆1 and maximize f(0) over
αk for 1 ≤ k ≤ 2N and ∆n for 2 ≤ n ≤ N , subject to

f(∆1) = 0 and

f(∆n) = f ′(∆n) = 0 for 2 ≤ n ≤ N.

If f(0) > 0, then f is not identically zero and ∆1 is an upper bound on
the spectral gap

For sphere packing this approach was used by Cohn and Elkies, and in the
conformal bootstrap a similar approach was first used by El-Showk and
Paulos

Afkhami-Jeddi, Hartman, and Tajdini recently improved this method by
dualizing the problem, which gives

fk(0) +

N∑
n=1

dnfk(∆n) = 0 for 1 ≤ k ≤ 2N .

These are 2N polynomial equations in 2N variables, and a solution can be
found efficiently by Newton’s method
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Orthogonal polynomials

wa,b(t) =
Γ(a+ b+ d− 1)

2a+b+d−2Γ(a+ d−1
2 )Γ(b+ d−1

2 )
(1− t)a(1 + t)b(1− t2)(d−3)/2,

∫ 1

−1

wa,b(t) dt = 1

Define Qa,bi with deg(Qa,bi ) = i and positive leading coefficient by∫ 1

−1

Qa,bi (t)Qa,bj (t)wa,b(t) dt = δi,j

Jacobi polynomials with parameters (d− 3)/2 + a and (d− 3)/2 + b
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Orthogonal polynomials

For a continuous function f : [−1, 1]→ R,

f0 :=

∫ 1

−1

f(t)w0,0(t) dt =

∫
Sd−1

f(〈x, e〉) dµ(x),

where e ∈ Sd−1 is an arbitrary point and µ is the surface measure on the
sphere Sd−1, normalized so that µ(Sd−1) = 1

We can view Q0,0
i as orthogonal zonal functions on Sd−1

Addition formula: Qi(〈x,y〉)
Qi(1) = 1

ri

∑ri
j=1 vi,j(x)vi,j(y)

The polynomials Qa,bi are of positive type: The matrices

(Qa,bi (x− y))x,y∈S are positive semidefinite for all finite S ⊆ Sd−1

Schoenberg: These polynomials generate all positive type functions



Orthogonal polynomials

For a continuous function f : [−1, 1]→ R,

f0 :=

∫ 1

−1

f(t)w0,0(t) dt =

∫
Sd−1

f(〈x, e〉) dµ(x),

where e ∈ Sd−1 is an arbitrary point and µ is the surface measure on the
sphere Sd−1, normalized so that µ(Sd−1) = 1

We can view Q0,0
i as orthogonal zonal functions on Sd−1

Addition formula: Qi(〈x,y〉)
Qi(1) = 1

ri

∑ri
j=1 vi,j(x)vi,j(y)

The polynomials Qa,bi are of positive type: The matrices

(Qa,bi (x− y))x,y∈S are positive semidefinite for all finite S ⊆ Sd−1

Schoenberg: These polynomials generate all positive type functions



Orthogonal polynomials

For a continuous function f : [−1, 1]→ R,

f0 :=

∫ 1

−1

f(t)w0,0(t) dt =

∫
Sd−1

f(〈x, e〉) dµ(x),

where e ∈ Sd−1 is an arbitrary point and µ is the surface measure on the
sphere Sd−1, normalized so that µ(Sd−1) = 1

We can view Q0,0
i as orthogonal zonal functions on Sd−1

Addition formula: Qi(〈x,y〉)
Qi(1) = 1

ri

∑ri
j=1 vi,j(x)vi,j(y)

The polynomials Qa,bi are of positive type: The matrices

(Qa,bi (x− y))x,y∈S are positive semidefinite for all finite S ⊆ Sd−1

Schoenberg: These polynomials generate all positive type functions



Orthogonal polynomials

For a continuous function f : [−1, 1]→ R,

f0 :=

∫ 1

−1

f(t)w0,0(t) dt =

∫
Sd−1

f(〈x, e〉) dµ(x),

where e ∈ Sd−1 is an arbitrary point and µ is the surface measure on the
sphere Sd−1, normalized so that µ(Sd−1) = 1

We can view Q0,0
i as orthogonal zonal functions on Sd−1

Addition formula: Qi(〈x,y〉)
Qi(1) = 1

ri

∑ri
j=1 vi,j(x)vi,j(y)

The polynomials Qa,bi are of positive type: The matrices

(Qa,bi (x− y))x,y∈S are positive semidefinite for all finite S ⊆ Sd−1

Schoenberg: These polynomials generate all positive type functions



Orthogonal polynomials

For a continuous function f : [−1, 1]→ R,

f0 :=

∫ 1

−1

f(t)w0,0(t) dt =

∫
Sd−1

f(〈x, e〉) dµ(x),

where e ∈ Sd−1 is an arbitrary point and µ is the surface measure on the
sphere Sd−1, normalized so that µ(Sd−1) = 1

We can view Q0,0
i as orthogonal zonal functions on Sd−1

Addition formula: Qi(〈x,y〉)
Qi(1) = 1

ri

∑ri
j=1 vi,j(x)vi,j(y)

The polynomials Qa,bi are of positive type: The matrices

(Qa,bi (x− y))x,y∈S are positive semidefinite for all finite S ⊆ Sd−1

Schoenberg: These polynomials generate all positive type functions



Delsarte-Goethals-Seidel bound

Let A(d, s) be the greatest cardinality of a set C ⊆ Sd−1 such that
x · y ∈ [−1, s] for all distinct x, y ∈ C

Theorem
Let f : [−1, 1]→ R be a continuous function and s ∈ [−1, 1]. If f is of
positive type as a zonal function on Sd−1, f(t) ≤ 0 for t ∈ [−1, s], and
f0 6= 0, then A(d, s) is at most f(1)/f0.
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Levenshtein’s universal bound

Let ta,bk ∈ [−1, 1) be the largest root of Qa,bk (t), with t1,10 := −1

One can show that −1 ≤ t1,1k−1 < t1,0k < t1,1k < 1

Define

f (s)(t) =

{
(t− s)

(
K1,0
k−1(t, s)

)2
if t1,1k−1 ≤ s < t1,0k , and

(t+ 1)(t− s)
(
K1,1
k−1(t, s)

)2
if t1,0k ≤ s < t1,1k ,

where

K1,0
k−1(t, s) =

k−1∑
i=0

Q1,0
i (t)Q1,0

i (s).

That (t− s)
(
K1,0
k−1(t, s)

)
is of positive type follows using the

Christoffel-Darboux formula

(t− s)K1,0
k−1(t, s) = (ck−1/ck)

(
Q1,0
k (t)Q1,0

k−1(s)−Q1,0
k (s)Q1,0

k−1(t)
)
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The Kabatianskii-Levenshtein bound

∆Rd ≤ min
π/3≤θ≤π

sind(θ/2)A(d, cos θ) = min
−1≤s≤1/2

(
1− s

2

)d/2
A(d, s)

The Kabatianskii-Levenshtein bound is obtained by combining
Levenshtein’s universal bound (originally a slightly weaker bound) with the
above geometric inequality

This gives the asymptotic upper bound

∆Rd ≤ 2−(0.59905576+o(1))d
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Asymptotic upper bounds

Kabatyanskii-Levenshtein
Linear programming bound
Record sphere packing
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Asymptotic upper bounds

d LP KL KL− LP Difference Ratio

1 0.00000 0.00000 0.00000
2 −0.07049 0.29248 0.36297
4 −0.15665 0.17511 0.33176

0.03122

8 −0.24737 −0.04879 0.19858
0.13318

0.23

16 −0.33192 −0.21692 0.11501
0.08357

1.59

32 −0.40382 −0.33342 0.07040
0.04461

1.87

64 −0.46101 −0.41947 0.04154
0.02885

1.55

128 −0.50432 −0.47947 0.02485
0.01669

1.73

256 −0.53589 −0.52023 0.01566
0.00919

1.82

512 −0.55824 −0.54749 0.01075
0.00491

1.87

1024 −0.57370 −0.56553 0.00816
0.00259

1.90

2048 −0.58418 −0.57737 0.00682
0.00135

1.92

4096 −0.59120 −0.58508 0.00611
0.00070

1.92

∞ ? −0.59906 ?



Asymptotic upper bounds

Conjecture
The Cohn-Elkies bound proves

∆Rn ≤ 2−(λ+o(1))d

for some 0.604 < λ < 0.605 when the auxiliary function is fully optimized

Conjecture
The constant λ is given by 2−λ =

√
e/(2π).

Equivalently

lim
d→∞

A−(d)√
d

=
1

π
,

where A−(d) denotes the optimal radius for the uncertainty principle
mentioned before
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Implied kissing numbers

Suppose h is an optimal auxiliary function for the Cohn-Elkies bound

By a scaling argument by Cohn and Miller, the average kissing number
dLP

1 (d/2) of any sphere packing attaining the Cohn-Elkies bound must be
equal to

− d

rh′(r)

This is called the implied kissing number of the bound
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Suppose h is an optimal auxiliary function for the Cohn-Elkies bound
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Implied kissing numbers

log2(·)/d of the Cohn-Elkies bound and the implied kissing number:

d LP IK 1 + LP− IK

1 0.00000 1.00000 0.00000
2 −0.07049 1.29248 −0.36297
4 −0.15665 1.18103 −0.33768
8 −0.24737 0.98836 −0.23573

16 −0.33192 0.81510 −0.14702
32 −0.40382 0.68279 −0.08661
64 −0.46101 0.58837 −0.04937

128 −0.50432 0.52325 −0.02757
256 −0.53589 0.47929 −0.01518
512 −0.55824 0.45003 −0.00827

1024 −0.57370 0.43077 −0.00447
2048 −0.58418 0.41822 −0.00240
4096 −0.59120 0.41009 −0.00128

∞ −0.6044 0.3956 0.00000



Implied kissing numbers

The modular invariance of the partition function implies∑
∆

d∆e
−β∆ ∼ (2π/β)c as β → 0

Using a tauberian theorem this implies

∑
∆≤A

d∆ ∼
∫ A

0

ρc(∆) d∆ as A→∞, where ρc(∆) =
(2π)c∆c−1

Γ(c)

We can approximate dLP
1 (c) by ρc(∆

LP
1 (c))(∆LP

2 (c)−∆LP
1 (c))

∆LP
2 (c)−∆LP

1 (c) is sublinear in c, from which it follows that the implied
kissing number is 2d+o(d) times the Cohn-Elkies bound for sphere packing
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Implied kissing numbers

We show that whenever we can prove a bound on the average kissing
number which is better than the implied kissing number, a theorem by L,
Oliveira, Vallentin can be used to improve the Cohn-Elkies bound

Could it be true that the Delsarte-Goethals-Seidel bound for the kissing
number problem can be used to strenghten the Cohn-Elkies bound in all
dimensions except d = 1, 2, 8, 24?
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Implied kissing numbers

Ratio of the implied kissing number to the Delsarte-Goethals-Seidel kissing
number bound
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Implied kissing numbers

Ratio of the implied kissing number to the Delsarte-Goethals-Seidel kissing
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Thank you!


