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Lubotzky-Phillips-Sarnak 1986/87

Points on sphere constructed from
p = G NN CENNG
prime sum of integer squares

Why 4 squares for 2d sphere?
(a,b,c,d) = quaternion = rotation of s

Proof that points are well distributed uses theorem of Deligne
(Ramanujan conjecture on Fourier coefficients of holomorphic cuspforms)

Fact that their properties are best possible uses theorem of Kesten
(random walk on groups)
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Quadrature: Y vs [

Operator: given finite set of rotations S, define

TH(x) =Y (S 'x)
S

self-adjoint on L2 if the set also contains S~ for each of its S

Largest eigenvalue: for f = 1 get
Tf = 2(f

where 2¢ = # of rotations

Want Tf small when [f =10
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No such luck on torus

Rotations = translations
X = X+a f=1,000,4

Constant function gives highest eigenvalue 2/ as before
But there are exponentials with eigenvalue arbitrarily close to 2¢

f(x) = exp(2mv/—1v - x) well-defined on torus R"/Z" for v € Z"

V4
Tf=)\f where )\, = ZZcos 27 - g;
(=1

2/

Q

provided v - g; are all close to integers
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A

Next largest |eigenvalue| of T, after 2¢ = )\
A1 = sup | |
over fwith [f=0and [ |f|? =1

¢ controls mean-square error in the approximation
1
/ i ZS: f(Sx)

over different choices of x

Want spectral gap: Ay as far from 2¢ as possible
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Quaternions and rotations



—

H ere as h = "-.'-.'L'L”-.:_".."-.l I'J Y

2

on the 16th of October 1843
Sirwilliam Rowan Hamilton
in a flash of genius discovered

the fundamentcal formula for
quaternion multiplication

i’= j’= k’= ijR =~

& cut it on a stone of this bridge
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Rotations

g=Ww+Xi+yj+zk hasaconjugate g=w—xi—yj— zk

Quaternion norm
N(q) = qG = w2 + x* + y? + 2°

Crucially N(g192) = N(q1)N(gz) so

If r has “real part” w = 0 then so does g 'rq
N(r) = x? + y? + 22 is also preserved

= Each quaternion g defines a rotation of the sphere
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Which rotation is it?

Polar form
g = S(cosf + usinf)

where s is a scalar and U=Xi+yj+zk withx%+y2+22=1
Note that u? = —1 for any such “unit quaternion”

Then r — g~ 'rq is a rotation by angle 26 around axis u

Compare with matrix form of the same rotation
1 0 0

(u vt ub) |0 cos20 —sin20| (v ut ud)'
0 sin20 cos26
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Example: p=5

5 = N(q) for any of the six quaternions 1 +2i,1 + 2j,1 + +2k
Polar form v/5(cos 6 4 usin #) where cos§ = 1/+/5 and u = +i,j, or k

Corresponding rotations have orthogonal axes X, Y, or Z
(counter)clockwise accordingto + (== S~ always comes with S)

Trig identity cos 26 = cos? § — sin § determines angle arccos(—3/5)
in degrees: roughly 126.86989764584402129685561255909341066
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Sums of four squares



8(p + 1) ways to write p as a sum of four squares
5=124+224+0%+0?
8(p+1) =48 = 6x 2x 22

two places out of four for 0 choose 1 vs 2 choose sign for non-zero coordinates

7=22412412 412
8(p+1)=64=4x24 four places for 2, then four signs to choose

11=02+124124+32
8(p+1)=12x23 four places for 0, three left for 3, three signs to choose

First really non-unique case: p=13with8(p+1)=8x6+8x8

13=3%2+221+02+0% 48 like this
=124+224224+22 64 like this

13/29



Jacobi’s 4-square theorem

8(p + 1) ways to write prime p as sum of four squares
For composite n, replace p + 1 by sum of divisors of n excluding multiples of 4

Only p + 1 ways of a standard form:
w + xi + yj + zk where w has different parity from the others

eg. 5=1242240%2+0% with one odd, others even

7 =224+12 112 1+ 12 with one even, others odd

For each prime p, get p + 1 quaternions of norm p such that

g mod 2 is either 1 (if p=1 mod 4) or i + j + k (if p = 3 mod 4)
with real part w > 0

Assume p = 1 mod 4 from now on
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Hurwitz quaternions

w + Xxi + yj + zk with coefficients either all integers, J

or all half-integers (gives D, instead of Z*) \

enables division with remainder for quaternions 1+i+j+k i
and a form of unique factorization 2

clarifies why Jacobi excludes multiples of 4: /

need to separate integer solutions from half-integer k
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Why does this achieve \{ = 2,/p?



Amplify difference between Ay and 2,/p by iterating many times
1
Taf(Q) = 5 D _ f(ac)

sum over quaternions « = 1 mod 2 with norm N(a) = n
Lemma: Tpm is a polynomial in T,

my2sin (m+1)6¢

Tom = Un(Tp) where  p ey

= Un(2\/pcosb)

Write eigenvalue as A = 2,/pcos 6
Want to show 0 is real so A\ < 2,/p
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If Tou = Au, with eigenvalue written A = 2,/pcos ¢

o — m/2S|n(m+1)9

Tomti =p sin 0 u

Input from Deligne: for any harmonic u and any point ¢ on the sphere
| Tomu(Q)| < p/2+em

constant depends on ¢, u, ¢ BUT NOT on m

Consequence: As m — co

pam > ~ em||mag 0|

sind

sin(m+1)6‘

exp rate clogp exp rate |Imag 6|

Only possible if 6 is real, since ¢ can be arbitrarily small
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From p to p™
Every integral quaternion with N(3) = p™ has a unique representation
8 = +p°(product of t quaternions of norm p)

where 2s + t = m, the factors are in “standard form” & = 1 mod 2
and the product is reduced (no cancellations aa~" allowed)

Tonf(Q)= > f(BO)= > Y f(we)
N(B)=p™ s<m/2 w
inner sum over shell at radius t = m—2sin (p+ 1)-regular tree
Recurrence
Gm(x) = XGm—1(x) — pPGm-2(X)

solved by linear combo of exponentials; initial values match
sin(m+1)6/sin6 19/29



Theta series

Generating function for the terms T,u we want to estimate
Given spherical harmonic u and point ¢, let

ZN u(ag) exp (2mv—1N(a)z/16)

sum over integral quaternions a with & = 2 mod 4
converges for 3(z) > 0

Collect terms:

8

0(z) = (I/m Z u(a()) exp(2nv/—1v2/16)

v=1
inner sum over o with N(a) = v and o = 2 mod 4
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1>, u(aQ)| < v'/2+ where N(a) = v, a = 2 mod 4

If the spharmonic u is non-constant, then

6 is a holomorphic cuspform of weight 2 + 2m for I'(4), meaning roughly:
0 is periodic under certain translations of z
further properties derived from Poisson sum
6 is not too large as ¥(z) — 0, 00 (would fail for u = 1)

Deligne’s theorem: for any holomorphic cuspform of weight k
vMcoefficient <. v*/2-1/2+¢

For 6, the coefficients are v™ )" u(a¢) and k =2 +2m
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Back to p™

Apply Deligne’s theorem with v = 4p™
Change (quaternion) variables to 5 = «/2

Get

> u(B)| < (p™M)'/3E
B=1 mod 2
N(B)=p™

which is the input we needed earlier:

m/2

| Tomu(¢)| < p™<p™
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Why can’t we do even better?



Cayley graph
Given a group G with generating set S
Assume S = {1, ... 7'} is symmetric (and finite)

The vertices of the Cayley graph are the elements of G
Edges connect g to sg for each generator s from the given set S

Adjacency operator on a graph:

Tf(x) = _f(y)

y~x

sum over all neighbours of the point x
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A Cayley graph we have met

Group G of order 8

Generating set S consists of i, j, k and inverses

More typically, G would be infinite e.g. Z? with generators (1,0) and (0, 1)
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A > 2+v/20 — 1 for any set of 2/ rotations

In particular \; > 2,/p for the p + 1 rotations from p = & + b? + ¢ + d?

Theorem (Kesten 1959)
2v20—1 < ||T|| <2¢

where T is the adjacency operator of a Cayley graph on 2¢ generators

IIT|| =2v2¢—1if and only if G is the free group on those generators

26/29



Banach-Tarski

Quaternions 1 +2iand 1 +2jfromp =5

generate a free group of rotations ++
(freedom guaranteed by Kesten; possible to check directly) et
A
CHOQOSE a set R of representatives from each orbit ;If ; I 1y I Iy I;
, ++
Every point of S? lies in wR for some word w in the generators a T L
a=1+2i, b=1-+2j, andtheirinverses 4y

Partition sphere based on first letter of w
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