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Motivation from (classical) Physics

@ Existence of ionic crystals Eninride
ions (CI7)
Sodium ions

@ Classical solids (not quantum) (Na¥)

@ NaCl structure as ground state
@ Pairwise interaction potentials
@ Minimal energy approach

@ Connection potential +» minimizer
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Mathematics of crystallization for pairwise potentials

@ Goal: Determine the minimizer of the potential energy
Ef(Xn) := Z f(|xi — xj|) (possibly in average as N — o)
i#j

Disordered atoms
@ Lennard-Jones potential f(r) = r=12 — r=6 Shoeae

= triangular lattice ground state expected (open problem).

@ Few existing results for identical particles when d > 2:

e Triangular lattice: [Heitmann-Radin '80], (...), [Theil '06] @
e Square lattice: [B.-De Luca-Petrache '19] Nucleus
!
@ Wigner conjecture for Jellium (renormalized Coulomb energy) @
e d = 2: crystallization on a triangular lattice (GL vortices); Caalal
e d = 3: crystallization on a BCC lattice. Classical

o (d € {8,24}: proved [Cohn et al. / Petrache-Serfaty '19])
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Lattice optimality of multi-component systems

Few results. Only in dimensions d € {1,2}!

@ Short-range potentials 2d w.r.t. charges:
o [Radin '86] (quasi-periodicity),
o [Friedrich-Kreutz '19/'20] (honeycomb and square lattices with
alternating charges).

@ 2d-torus with graph distance: [Bouman-Draisma-Van Leeuwaarden '13]
(square lattice with alternating charges).

@ 1d periodic structures/alternation of charges/3 potentials:
[B.-Kniipfer-Nolte '20].

Optimality of lattices with alternation of charges:
[Luo-Wei '20] (3-block copolymers, 2-components BEC)

@ Minimization among lattices with prescribed charges: [B. '20]

@ Numerical investigations: Many, especially in 2d.
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For more references, visit the

Crystallization Page

https://sites.google.com/site/homepagelaurentbetermin/crystallization-page
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Lattices, Interaction Potentials and Charges
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Lattices and two-dimensional examples

We call a lattice L € R? any discrete set of the form

d
L=@D2Zu;, {u,..ug} basis of RY.

i=1

The set of all these lattices is L4, and L4( V) if the volume of the unit cell is
fixed to be V > 0. Thedual of Lis L* :={y € RY:y-p € Z,V¥p € L}.

@ Square lattice Z2;

o Triangular lattice Ay = Ag [2(1,0) Y/ (%7 ?)] o s.t. Az € La(1).
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Lattices in dimension d > 3

@ Orthorhombic lattices: generated by an orthogonal basis (e.g. Z9);
@ Body-centred-cubic (BCC) and Face-centred-cubic (FCC) lattices;

@ Eg and the Leech lattice Ayq: best packings [Viazovska et al. '16].

Orthorhombic, BCC and FCC lattices

Remark: Orthorh*=Orthorh, Triang*=Triang, BCC*=FCC, Ej = Eg, A3, = Noa.

lonic crystals Y



Pairwise interacting potentials

For technical reasons, we sum the energies on the square of distances.

@ Laplace transforms of measures, i.e.

F(r) = LLurl(r) = /0 e dpue(t).

@ Particular case: f is completely monotone if, equivalently:
o Forall k € Ny, for all r >0, (—1)%f(K(r) > 0;
e f is the Laplace transform of a positive measure uf;
. 1 st
o Typical example: f(r) = —, where dus(t) = ——dt.
rS

r(s)

@ Strategy: superposition of Gaussians.

o0
. ¥ f(\p|2):/ S et dpug(t) for suitable f.
pel\{0} 0 \peL\{o}

“theta function”
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Periodic distribution of charges on a lattice L

Distribution of charge ¢ : L — R, s.t. x € L has charge ¢, = ¢(x).
N-periodicity: ¢ € Ay(L), i.e. Vx € L,Vi, o(x + Nu;) = p(x).

The total charge is fixed: Z cpi = N9. We assume wo > 0.
YEKN

d
Periodicity cube Ky := ¢ x =Y mju; € 0 <m; <N — 1}.
i=1

We note K}, the same for the dual lattice L*.
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Minkowski reduced basis for center and alternating charges

We choose a reduced basis {uy, ..., uy} for all our L in the following sense:

For all i € {1,...,d}, vector u; satisfies |u;| < |u| for any lattice vector v/
such that {u, ..., uj_1, u}} can be completed to another basis of L.

= The Minkowski basis of an orthorhombic lattice is the orthogonal one;
= In dimension 2, |u1| < |uz| and (01, 1) € [5, 2]

= Good definition of alternating charges distribution and center of the unit cell.

B o [ & & 6 ] B & 6 (3 6 3 El
® ] ® [} ® € =] ® e ® e ® i
® ] ® [} ® [} q B ® e ® =) ® i
® ] ® ] ® ] ® e ® ] ® i
2] e [} e ] e q B ® e ® e ® 4
[} e ] <) [} ¢ 2p ® ) ® e ®
a a a a - @

= a @ @
= 2 E) g 1 2 3 B 2 g g 7 2 3

Minkowski basis of Z2 vs. another one, with alternation of charges p+ € {£1}.
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Theta functions associated to lattices
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Translated lattice theta function

For a lattice L C RY, a point z € R? and o > 0, we define
Liela) = 3 ol el
peL

Py (z, 7X-) where P, solves the heat equation

Oru(z,t) = A,u for (z,t) € R x (0, 00)

0) :Z(Sp for z € RY.

pel

Poisson Summation Formula for Gaussians: Va > 0,L € L4(1),z € RY,

|p|?

— 2 —
2 :e ma|p+z| 2 :6217rpz =

pel 2 peL* ‘charge

Laurent Bétermin lonic crystals
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Two types of optimality for the lattice theta functions

L 9L(Ol) _ Z ef7roz|p|2 N 9L+z(04) _ Z efwa|p+z|2
peL peL
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-
Two types of optimality for the lattice theta functions

L 9L(oz) _ Z efwa|p|2 N 9L+z(04) _ Z efwa|p+z|2
peL peL

@ Optimality among lattices L when z = 0.

At fixed density 1 - with respect to a > 0.

d = 1: [Ventevogel '78], minimality Va > 0 of Z.

d = 2: [Montgomery '88], minimality Va: > 0 of A,.

d = 3: [Sarnak-Strombergsson '06], Conjectured only,

BCCifa<1, FCCifa>1.

d € {8,24}: [Cohn-Kumar-Miller-Radchenko-Viazovska '19],

Eg and the Leech Lattice Ayq Voo > 0 (among periodic configurations).
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-
Two types of optimality for the lattice theta functions

L 9L(oz) _ Z efwa|p|2 N 0L+z(04) _ Z efwa|p+z|2
peL peL

@ Optimality among lattices L when z = 0.

At fixed density 1 - with respect to o > 0.

d = 1: [Ventevogel '78], minimality Va > 0 of Z.

d = 2: [Montgomery '88], minimality Va: > 0 of A,.

d = 3: [Sarnak-Strombergsson '06], Conjectured only,

BCCifa<1, FCCifa>1.

d € {8,24}: [Cohn-Kumar-Miller-Radchenko-Viazovska '19],

Eg and the Leech Lattice Ayq Voo > 0 (among periodic configurations).

@ Optimality among vectors z when L is fixed (up to periodicity.).

e d=1: L =7 - Minimum at the center of an interval zp = 1/2.
o Orthorhombic lattices: [B.-Petrache '17] - Center of the cell z.
o Triangular lattice: [Baernstein Il '97] - Barycenter of a triangle z.
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Optimality among vectors z when L is fixed

L _ 2
Minimizer of z+ 0;,(a) = Z e P+l o > 0.
peL

~
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Proof of Born’s Conjecture

L. Bétermin and H. Kniipfer, On Born’s conjecture about optimal distribution of
charges for an infinite ionic crystal, Journal of Nonlinear Science 28, 2018.
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Born's problem for the electrostatic energy (1921)

Max Born (1882-1970)

“How to arrange positive and negative charges
on a simple cubic lattice
so that the electrostatic energy is minimal?”

Uber elektrostatische Gitterpotentiale,
Zeitschrift fiir Physik, 7:124-140, 1921
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|
Born's Conjecture (1921) for Coulomb potential

Conjecture [Born '21]

The alternate distribution of charges ¢ = £1 (NaCl) is the unique solution
among all periodic distributions of charges ¢ € [Jy An(Z3).

The total amount of charge is fixed and the neutrality has to be assumed (the
Coulomb potential is not summable on Z3).

Born’s proofs: 1d and local minimality in 3d for Coulomb interaction.
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Energy in terms of translated theta function
If r— £(r?) € £1(L\{0}) and s > 0, then, using the Discrete Fourier Transform,

. 1 o2
ELele] = lim | —— Z Z Soy‘Pp+yf(|P|2)e el
n—0 \ 2N pe\{0} yEKN

1 _d —
= ona D SEIKL &= NTEgEG(k) > 0
keKy

where, using f(r) = L[ur](r) and the Poisson Summation Formula,

Eld= Y e ®errp?) = [ (xteto (T) 1) duto)

peL\{0}
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Energy in terms of translated theta function

If r— £(r?) € £1(L\{0}) and s > 0, then, using the Discrete Fourier Transform,

. 1 o2
el = lim | 50 D D eyepryf(lplP)e"P
n—0\ 2N pe\{0} yEKN
1

_d —
= ona D SEIKL &= NTEgEG(k) > 0
keK;,
where, using f(r) = L[ur](r) and the Poisson Summation Formula,
— —Zipk 2y [T (ot ™ _
Bl = 3 e @ere(p?) = [ (vt (T) -1) durto)

peL\{0}

Strategy (general): Finding the minimizer z of z — 6,- () for all & > 0 and
such that INp > 0 where z, € N *L* gives the solution (¢ and then ¢).
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Energy in terms of translated theta function

If r— £(r?) € £1(L\{0}) and s > 0, then, using the Discrete Fourier Transform,

. 1 o2
el = lim | 50 D D eyepryf(lplP)e"P
n—0\ 2N pe\{0} yEKN

1 _d —
= ona D SEIKL &= NTEgEG(k) > 0
keKy

where, using f(r) = L[ur](r) and the Poisson Summation Formula,
— %Pk 2y [ (nt-1 T\ _
Bl = 3 e @ere(p?) = [ (vt (T) -1) durto)
peL\{0}

Strategy (general): Finding the minimizer z of z — 6,- () for all & > 0 and
such that INp > 0 where z, € N *L* gives the solution (¢ and then ¢).

Remark: Also true for non-summable f(r?®) if Z ¢y = 0 (Ewald Summation Method).

YEKN
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Proof of Born's Conjecture

Our general result works for any completely monotone potential f.
@ If L* is orthorhombic, then z5 = %Z?zl u? is the center and Ny € 2N.
o If L* = A5 = A, then z is a barycenter of a triangle and Ny € 3N.
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Proof of Born's Conjecture
Our general result works for any completely monotone potential f.
@ If L* is orthorhombic, then z5 = %Z?zl u? is the center and Ny € 2N.
o If L* = A5 = A, then z is a barycenter of a triangle and Ny € 3N.
Theorem - Solution of Born's problem [B.-Kniipfer '17]
The unique minimizer of p — & ¢[e] in Jy An(L) is:

@ The alternate distribution ¢ of charges —1 and +1 if L is orthorhombic;

2
@ The honeycomb-like distributions of charges {—\2[, +\/§} if L=A;.

Rock-Salt (NaCl) structure and Sodium Sulfide (Na.S) layer
lonic crystals 16/12/20 21 /35



Maximal Theta Function among alternated lattices

L. Bétermin and M. Faulhuber, Maximal Theta Functions - Universal Optimality of
the Hexagonal Lattice for Madelung-Like Lattice Energies, arXiv:2004.04553, 2020.
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Alternate and centred lattice theta functions

@ We choose ¢ to be the alternate distribution ¢ = +1.
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N
Alternate and centred lattice theta functions

@ We choose ¢ to be the alternate distribution ¢ = +1.

@ We choose f completely monotone, i.e. such that ur > 0.
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N
Alternate and centred lattice theta functions

@ We choose ¢ to be the alternate distribution ¢ = +1.

@ We choose f completely monotone, i.e. such that ur > 0.

@ We have & r[p4] = Z o+ (p)f(|p|?) / Z oi(p)e Pt dpg(t).

pel\{0} pel\{0}
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N
Alternate and centred lattice theta functions

@ We choose ¢ to be the alternate distribution ¢ = +1.

@ We choose f completely monotone, i.e. such that ur > 0.

@ We have & r[p4] = Z o+ (p)f(|p|?) / Z oi(p)e Pt dpg(t).

pel\{0} pel\{0}

@ There is no minimizer for L — & ¢[p4] if pr > 0.
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Alternate and centred lattice theta functions

We choose ¢ to be the alternate distribution ¢4 = £1.

We choose f completely monotone, i.e. such that us > 0.

We have & ¢[ps] = > ¢x(p)f(Ip%) / 3 pap)e P dp(t).

pel\{o0} peL\{0}
There is no minimizer for L — & ¢[p+] if pr > 0.

Problem: Finding the maximizer in £4(1), for fixed a > 0, of the alternate
lattice theta function,

Les 0F(a) = > pu(p)e ™l
peL
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N
Alternate and centred lattice theta functions

@ We choose ¢ to be the alternate distribution ¢ = +1.

@ We choose f completely monotone, i.e. such that ur > 0.

@ We have & r[p4] = Z o+ (p)f(|p|?) / Z oi(p)e Pt dpg(t).

pel\{o0} peL\{0}
@ There is no minimizer for L — & ¢[p4] if pr > 0.

@ Problem: Finding the maximizer in L4(1), for fixed o > 0, of the alternate
lattice theta function,

Les 0F(a) = > pu(p)e ™l
peL

@ Equivalently, by Poisson Summation Formula, we want to maximize in
L4(1), for fixed a > 0, the centred lattice theta function

d
L— 9 Ze_ﬂa‘p+cL‘ cL = %Zu;.
i=1

peL
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A new universal optimality result

0F(0) =Y pi(p)e ™ pf(a) =Y emmaleral’

pelL pelL
Theorem - Maximality of the triangular lattice [B.-Faulhuber '20]
For any o > 0, A is the unique maximizer of 67 (a) and 65(a) in £2(1). J
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A new universal optimality result

=Y pi(p)e ™l g5(a) =3 emmelrtal,

pelL pelL
Theorem - Maximality of the triangular lattice [B.-Faulhuber '20]
For any o > 0, A is the unique maximizer of 67 (a) and 65(a) in £2(1). J

@ Direct consequence: the same is true for all ¥ s.t. ur >0, i.e. Ay maximizes

L Eflpsl = > wx(p)f(Ipl?) / ST palp)e Pt dp(t).

peL\{0} peL\{0}
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A new universal optimality result

=Y pi(p)e ™l g5(a) =3 emmelrtal,

pelL pelL
Theorem - Maximality of the triangular lattice [B.-Faulhuber '20]
For any o > 0, A is the unique maximizer of 67 (a) and 65(a) in £2(1). J

@ Direct consequence: the same is true for all ¥ s.t. ur >0, i.e. Ay maximizes

L Eflpsl = > wx(p)f(Ipl?) / ST palp)e Pt dp(t).

peL\{0} peL\{0}

@ It is a new type of universal optimality among lattices, i.e. true for any
completely monotone potential (see [Cohn-Kumar '07]).

lonic crystals R



A new universal optimality result

=Y pi(p)e ™l g5(a) =3 emmelrtal,

pelL pelL
Theorem - Maximality of the triangular lattice [B.-Faulhuber '20]
For any o > 0, A is the unique maximizer of 67 (a) and 65(a) in £2(1). J

@ Direct consequence: the same is true for all ¥ s.t. ur >0, i.e. Ay maximizes

L Eflpsl = > wx(p)f(Ipl?) / ST palp)e Pt dp(t).

peL\{0} peL\{0}

@ It is a new type of universal optimality among lattices, i.e. true for any
completely monotone potential (see [Cohn-Kumar '07]).

@ Conjectured to be true in dimensions d € {8,24} for Eg and Aya.
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The maximal structure (Az, 1) amongst (L, v+)

Laurent Bétermin

lonic crystals

16/12/20

25 / 35



Maximality of A, - ldea of the proof

© We parametrize L by a point (x,y) in the half-elliptic domain
D:={(x,y) €R*: x€[0,1/2],y > 0,x* + y* > 1}.

@ We show that x + 6;(a) is increasing on [0,1/2];

@ Fixing x = 1/2, we show that y + 6 (a) is decreasing on [§7 oo).

@ Use of estimates comparable to the one of [Montgomery '88].

D

L
yl----@

0.8+

T o0&
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Optimality of the rock-salt structure among lattices and charges

L. Bétermin, M. Faulhuber and H. Kniipfer, On the optimality of the rock-salt
structure among lattices with charge distributions, accepted in Mathematical Models
and Methods in Applied Sciences, arXiv:2004.04553, 2020.
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A new energy Eg ¢ with repulsion at 0

@ We remark that, if us > 0, then rpin &L flp] = —oc0.
e

We add a completely monotone repulsive part f;, defining a new f:

Flx—yP)= Alx—yI) + expyhllx —yP?)

Repulsion at the origin  Tail - Charges interaction

Chosen potentials: fi(r) = r=P, f,(r) = r=9, such that p > g > d/2.

@ New total energy per point:

1
EplL o] := Allp?) + <g Py fa(|pl?) -
N

pel\{0} pel\{0} yEKN

Eq [L] 2815 [v]

Problem: Find the minimizer of Eg 5 in Lg x [y An(La).
Is it a rock-salt structure (AZ9,+1)? (for some A > 0)
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The two competitive energies

1
Ensllioli= ) "1(|P\2)+W Yo Y wveenhllplP).

pel\{0} pel\{0} yEKN

Eq (L] 2815 ¥]
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The two competitive energies
1
Enslloel= > AleP)+5g D D eveerllpl).

pel\{0} pel\{0} yEKN

Eq L] 2815 ¥]
o If up >0, Ef, has a minimizer in L4(V) for fixed V > 0 (not in Ly):
d=2: A, forall V > 0.
d = 3: BCC or FCC (conjecture), probably changing with V.
d € {8,24}: Eg and the Leech lattice Ay.
Among orthorhombic lattices: ViZ is the unique minimizer in
L4(V), [Montgomery '88].

16/12/20 29 / 35
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The two competitive energies
1
Enslloel= > AleP)+5g D D eveerllpl).

pel\{0} pel\{0} yEKN

Eq L] 2815 ¥]
o If up >0, Ef, has a minimizer in L4(V) for fixed V > 0 (not in Ly):

d=2: A, forall V > 0.

d = 3: BCC or FCC (conjecture), probably changing with V.

d € {8,24}: Eg and the Leech lattice Ay.

Among orthorhombic lattices: ViZ is the unique minimizer in
L4(V), [Montgomery '88].

o If g >0, (L, ) — &L 5lp] does not have any minimizer, only maximizers.

If L is fixed, possibility to find the optimal ¢ (Born's problem).

If ¢ =1, then & [p] = E[L] (see above), but not optimal.
Among all lattices of L£,(V) with ¢4, Az is the unique maximizer.
Among orthorhombic lattices with ¢, ViZ9 is the unique
maximizer in L4(V) [Faulhuber-Steinerberger '17].
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Orthorhombic lattices with ¢ at fixed density

Efplll=Enpllosl= > AP+ D wx(p)f(lpf)
pel\{0} peL\{0}

Born: Restricted to orthorhombic lattices, Eff&[L] < Eq 5L, o] VN,V € Ay(L).
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-
Orthorhombic lattices with ¢ at fixed density

Efplll=Enpllosl= > AP+ D wx(p)f(lpf)
pel\{0} peL\{0}

Born: Restricted to orthorhombic lattices, Efi&[L] < Eq 5L, o] VN,V € Ay(L).
Theorem - Optimality of the rock-salt structure [B.-Faulhuber-Kniipfer '20]
Let fi(r) =rP and K(r)=r"9 p>q>d/2.

e Vd > 1, ViZ? is a critical point of E;, in Ly(V).

@ Vd > 1, there exists Vy such that for all V € (0, W), ViZ9 is the unique
minimizer of Efffz among orthorhombic lattices with fixed volume V > 0.

@ Vd > 1, there exists V; such that for all V € (V4,00), V3Z9 is not a
minimizer of Eﬁif2 among orthorhombic lattices with fixed volume V > 0.

v
In particular, restricted to orthorhombic lattices, the rock-salt structure is
globally optimal among charges and lattices at high density.
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Global optimality of the rock-salt structure
We define the alternate Epstein zeta function by

Loy v+(p)
CL (5) T ‘p|5 )

s>d.
peL\{0}

We already know that (j*(s) < (i, (s) < 0 for all L € L5(1) by [B.-Faulhuber '20].
This is expected to be true for all d > 1.

Laurent Bétermin lonic crystals
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Global optimality of the rock-salt structure

We define the alternate Epstein zeta function by

Cit(s) — Sﬁﬂ:(P)

, s>d.
p|®

peL\{o}

We already know that (j*(s) < (i, (s) < 0 for all L € L5(1) by [B.-Faulhuber '20].
This is expected to be true for all d > 1.
Theorem - Minimal energy among dilated [B.-Faulhuber-Kniipfer '20]

Let d > 1, A(r)=r"Pand f(r)=r"9 p>q>d/2. ForLe Ly4(1), if
¢F(2g) < 0, then

(q— p) (—acE(2q)) 77

v <0.
ap(pCL(2p))?—e

+ ot L _
g = r\}!réthﬁ[VdL] =

Problem: What is the minimizer of L+ £ in L4(1)? (shape of the global min)

lonic crystals Y



Numerics in dimension 2 for ,(r?) = r=8, f(r?) = r°.

We plot L~ & in the fundamental domain D of 2d lattices.

Numerically, the global minimum of Efiﬁ in L, is a square lattice.

The same is expected in dimensions d € {3, 8,24} for Z3, Z® and Z?*. We have
compared different values of &;°.

lonic crystals R



N
Other numerical observations

@ We have compared 6’; with other optimal charge distributions, without
finding any better candidate for being a minimizer of (L, ) — Eg 5[L, ¢].
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N
Other numerical observations

@ We have compared 5; with other optimal charge distributions, without
finding any better candidate for being a minimizer of (L, ) — Eg 5[L, ¢].

@ As V increases, argmin Eflif2 exhibits a phase transition of type:
LeLy(V)

Triangular - Rhombic - Square - Rectangular.

Already observed for Lennard-Jones/Morse potentials, 3-block copolymers,
two-components Bose-Einstein-Condensates.
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N
Other numerical observations

@ We have compared 5; with other optimal charge distributions, without
finding any better candidate for being a minimizer of (L, ) — Eg 5[L, ¢].

@ As V increases, argmin Eflif2 exhibits a phase transition of type:
LeLy(V)

Triangular - Rhombic - Square - Rectangular.

Already observed for Lennard-Jones/Morse potentials, 3-block copolymers,
two-components Bose-Einstein-Condensates.

@ If p— g is small enough, the minimizer of Eﬁif2 in L5 is not a square lattice.

lonic crystals Y



Conclusion

@ New general strategy to optimize energies among charges on a lattice.
o Key point: minimization of z — 6;+4,(«) for all a > 0.

@ New universal optimality property for the triangular lattice.
o Key point: minimization of L+ 67 (a) for all @ > 0.

o New type of minimization problem for Z¢ - NaCl ground state.
o Similar to minimizing L — 0,(3) + (), 8 > a.
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YOU COMPLETE MG |

\

Thank you for your attention!

lonic crystals Y



