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Statement of the problem

I Given a compact set, what is the maximal number of disks which
can be packed into the set?

I Similarly, there is a dual problem which asks for the minimal of disks
needed to cover a given compact set.

I Examples of these questions, how will a given gas expand to fit its
container? How do you best distribute an important resource over a
large area with irregular shape?
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Examples

Figure: On the left we have a well covered square with four points, on the right a poorly covered
square by four points
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Best Packings

I Let Rd be our ambient space and

ωN = {y1, . . . , yN} ⊂ Rd

a collection of N points

I Set the following to be the minimum distance between any pair of
points

δ(ωN) := min
1≤i 6=j≤N

|yi − yj |
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Best Packings

I Let A be an infinite, compact set and define the best packing
distance of N points on A as

δN(A) := sup{δ(ωN) : ωN ⊂ A,#ωN = N}

I For instance the best packing of N points in [0, 1] consists of N
equally spaced points with separation 1

N−1
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Best Coverings

I Let A be an infinite, compact set and define the best (constrained)
covering distance of N points on A as

ρN(A) := min
ωN⊂A

max
y∈A

dist(y , ωN)

I If we consider the collection of points ω∗N ⊂ Rd then we call this the
unconstrained covering, denoted ρ∗N(A)

ρ∗N(A) := min
ω∗

N⊂Rd
max
y∈A

dist(y , ω∗N)
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Minimal Energy

I Given a lower semi-continuous kernel K (x , y) : A× A→ (−∞,∞]
and a configuration ωN given as seen previously, its K−energy is
given as

EK (ωN) :=
∑

1≤i 6=j≤N

K (xi , xj)

E(A;N) := min
ωN⊂A

{EK (ωN)}

the minimal K−energy over all such configurations

I Finding the optimal configurations such that E = E is in general a
difficult problem



8/30

Maximal Polarization

I The problem of maximal polarization is defined as follows

UK (y ;ωN) :=
N∑
i=1

K (y , xi )

then consider the minimum

PK (A;ωN) := inf
y∈A

UK (y ;ωN)

then the Nth K−polarization (Chebyshev) constant of A is defined
as

PK (A;N) := sup
ωN⊂A

PK (A;ωN)



9/30

What’s the Goal?

Polarization Coverings

New results for Covering

hopefully

Known results

Current direction

1
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Theorem:

Theorem
For compact sets A ⊂ Rp and integers d , p satisfying 1 ≤ d ≤ p and
2 ≤ p and Hd(A) > 0, then: If limN→∞ η∗N(A) · N1/d exists, then
limN→∞ ηN(A) · N1/d also exists and they agree.
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Weak Separation for Coverings

I We need a lemma that gives us flexibility in our covering points

0 2 3

x0 x1

0 2 3

x0 x1
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Replacing Uncontrained with Constrained points

I If a point lies outside of the set, we can replace it with nearby points

0 2x∗

0 2

x1 x2
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Consequences and Transition

I This result, and its contrapositive, has additional results worth
discussing
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Densest Sphere Packing in Rp

I What is the ’densest’ arrangement of congruent p-dimensional
spheres in Rp? (by proportion of volume the spheres occupy in the
ambient space.) Denote the quantity by ∆p.

I Prior to 2015 we knew only cases p = 1, 2, 3

I Maryna Viazovska, Henry Cohn & collaborators recently showed:

E8 attains ∆8 = π4/324 in R8

Leech lattice attains ∆24 = π8/(12!) in R24

Figure: Hexagonal Lattice attains ∆2 = π/
√

12 in R2
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Growth Order of Packing and Covering

I Proving exact answers is generally very hard =⇒ consider N →∞
I Let d = dimH(A) denote the Hausdorff dimension of A ⊂ Rp

compact. Then

δ(A;N) = O(N−1/d),N →∞,
η(A;N) = O(N−1/d),N →∞,
η∗(A;N) = O(N−1/d),N →∞.
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Poppy-Seed Bagel Theorem (PSBT)

I Smoothness assumptions on A =⇒ existence of asymptotics for
best packing, best covering (minimal energy, maximal polarization...)

Theorem (PSBT for Packing)
Let A be a smooth d-manifold embedded in Rp. Let Hd denote the
d-dimensional Hausdorff measure (just surface measure for A in this
case.) Then

lim
N→∞

δ(A;N)N−1/d = CdHd(A)1/d ,

where Cd is a positive constant depending on only d .
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PSBT for Packing

. . . Moreover, if Hd(A) > 0 then the sequence of probability measures

νN :=
1

N

N∑
i=1

δxi

obtained from best packing configurations ωN := {x1, . . . , xN},N ≥ 2 is
uniformly distributed with respect to normalized Hd in the limit. That is,
in the weak* topology of measures

νN
∗→ Hd(A ∩ ·)
Hd(A)

,N →∞.
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The Torus (Bagel)

I Cd = (∆d/βd)1/d where βd is the volume of the unit ball in Rd , ∆d

is the the largest sphere packing density in Rd

I PSBT Part 2 =⇒ for the torus, A := T ⊂ R3 (d = 2) best packing
configurations uniformly distributed for large N
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Covering Asymptotics

I ’PSBT’ for covering (circa 1950-1960 by Kolmogorov & Tichomirov)
only proven for Jordan measurable sets in the unconstrained case,
for full dimension, with nothing about distribution.

Theorem (PSBT for Unconstrained Covering)
Let A ⊂ Rp be a compact set with Lp(∂A) = 0. Define
Σ∗p := infN≥1 η

∗([0, 1]p;N) · N1/p. Then Σ∗p > 0 and

lim
n→∞

η∗(A;N) · N1/p = Σ∗pLp(A)1/p.
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Corollary 1

I ’Existence of unconstrained covering asymptotics =⇒ existence of
constrained covering asymptotics, and the limits agree’ so we get
the following...

Theorem (PSBT for Constrained Covering)
Let A ⊂ Rp be a compact set with Lp(∂A) = 0. Then

lim
n→∞

η(A;N) · N1/p = Σ∗pLp(A)1/p.

I PSBT for Packing is known under very mild smoothness
assumptions (e.g. on sets that are the image of a compact set
under a Lipshitz map). This should happen for covering as well...
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How Much Regularity is Necessary? Enter Fractals

I Without some ”rectifiability” what can be said? Fractals generally
lack any smoothness but possess nice scaling and translation
properties.

I We begin by examining packing on the 1/3-Cantor Set.
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Asymptotics of Best Packing on the 1/3-Cantor Set

2n point best packings behave nicely on the 1/3-Cantor set C .

δ(C ; 2n) = 1/3n−1, and dimH(C ) = d = log3(2)
=⇒ limn→∞ δ(C ; 2n) · 2n/d = limn→∞

3n

3n−1 = 3

I So the limit at least exists along a subsequence!
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Breakdown of PSBT for Packing on the Cantor Set

On the 1/3-Cantor set C we obtain

δ(C ; 2n + 1) = 1/3n =⇒ lim sup
N→∞

δ(C ;N) · N1/d > lim inf
N→∞

δ(C ;N) · N1/d

I So limN→∞ δ(C ;N) · N1/d does not exist.

I Does this phenomenon hold on more general fractals?

I What is the story for covering?
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Self-Similiar Fractals

I A compact set A ⊂ Rp is a self-similar fractal fixed under K
similitudes if

A =
K⋃
j=1

ψj(A)

where the similitudes ψj are contraction mappings satisfying
ψj(x) = rjO(x) + zj , for contraction ratios 0 < rj < 1, and an
orthogonal matrix O ∈ O(p)

I Our self-similar fractals must also satisfy the Open Set Condition
(OSC) and have ψj(A) ∩ ψi (A) = ∅, i 6= j .
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Dependent vs. Independent Similitudes

I For a self similar fractal A with similitudes {ψj}Kj=1 and contraction

ratios {rj}Kj=1, the similitudes are dependent (or lattice) if there
exists h > 0 such that{ M∑

j=1

aj log(rj) : aj ∈ Z
}

= hZ.

I Otherwise the similitudes are independent

I The 1/3-Cantor set C ⊂ R1 is a dependent self-similar fractal with
similitudes ψ1(x) = 1/3x , and ψ2(x) = 1/3x + 2/3.
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Packing and Covering on Self-Similar Fractals

I Let N(ε) := max{n ≥ 2 : δ(A; n) ≥ ε},
M(ε) := min{n ≥ 2 : η(A; n) ≤ ε}, ε > 0

Theorem (PSBT for Packing and Constrained Covering on
Self-similar fractals)
Suppose A is a self-similar fractal with dimH(A) = d . Then the following
limits

lim
N→∞

δ(A;N) · N1/d = lim
ε→0+

ε · N(ε)1/d

lim
M→∞

η(A;M) ·M1/d = lim
ε→0+

ε ·M(ε)1/d

exist if and only if the similitudes defining A are independent.
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Proof Sketch

1. Independent =⇒ existence: due to S.P. Lalley and Renewal
Theory from Probability

2. Dependent =⇒ non-existence: For some 0 < r < 1, contractions
for A look like {r ij}Kj=1, ij ∈ Z+ relatively prime
I δ(A;N(rn)) ≥ rn and δ(A;N(rn) + 1) ≤ Crn for some C < 1, n large
I η(A;M(rn)) ≤ rn and η(A;M(rn)− 1) ≥ Drn for some D > 1, n

large
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Corollary 2

I Let M∗(ε) := min{n ≥ 2 : η∗(A; n) ≤ ε}, ε > 0

I By contrapositive, ’Non-existence of constrained covering
asymptotics =⇒ non-existence of unconstrained covering
asymptotics’ so we get the following...

Theorem (Unconstrained Covering on Dependent Fractals)
Suppose A is a dependent self-similar fractal with dimH(A) = d . Then
the following limits do not exist

lim
M→∞

η∗(A;M) ·M1/d

lim
ε→0+

ε ·M∗(ε)1/d
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